HESI A2
HESI Exams Quizlet Physics
1. In terms of electrical conductivity, semiconductors fall between
- A. Conductors and insulators
- B. Conductors and superconductors
- C. Insulators and dielectrics
- D. Superconductors and insulators
Correct answer: A
Rationale: Semiconductors have electrical conductivities that lie between those of conductors (high conductivity) and insulators (low conductivity). This positioning makes choice A, 'Conductors and insulators,' the correct answer. Choice B, 'Conductors and superconductors,' is incorrect because superconductors have perfect conductivity, not intermediate like semiconductors. Choice C, 'Insulators and dielectrics,' is incorrect because dielectrics are a type of insulator, so it doesn't show the progression from high to low conductivity. Choice D, 'Superconductors and insulators,' is incorrect because superconductors have the highest conductivity, opposite to the role of semiconductors.
2. According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to what factor?
- A. the gravitational constant
- B. the distance between them
- C. the product of their masses
- D. the square of the distance between them
Correct answer: C
Rationale: According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to the product of their masses. The equation is: F = G × (m₁ × m₂) / r², where F is the gravitational force, G is the gravitational constant, m₁ and m₂ are the masses of the two objects, and r is the distance between them. Choice A is incorrect because the gravitational constant is a constant value. Choice B is incorrect because the distance between the objects affects the strength of the gravitational force inversely proportional to the square of the distance, not directly proportional. Choice D is incorrect as it represents the inverse square law, where the gravitational force decreases with the square of the distance between the objects.
3. What is the main difference between a reversible and irreversible process in thermodynamics?
- A. Reversible processes involve heat transfer, while irreversible processes do not.
- B. Reversible processes occur instantaneously, while irreversible processes take time.
- C. Reversible processes can be run in both directions with the same outcome, while irreversible processes cannot.
- D. Reversible processes violate the first law of thermodynamics.
Correct answer: C
Rationale: A reversible process is an idealized process that can be reversed without leaving any change in either the system or the surroundings. In contrast, irreversible processes cannot be reversed and often involve entropy production or dissipation. Choice A is incorrect because both reversible and irreversible processes can involve heat transfer. Choice B is incorrect as the speed of a process does not determine its reversibility. Choice D is incorrect because reversible processes do not violate the first law of thermodynamics; they comply with it by maintaining a balance between energy inputs and outputs. Therefore, the correct answer is C, as it accurately captures the main difference between reversible and irreversible processes in thermodynamics.
4. In hydraulic systems, Pascal's principle states that a pressure change applied to a confined incompressible fluid is:
- A. Amplified but loses energy
- B. Transmitted undiminished throughout the fluid
- C. Limited by the container size
- D. Dependent on the fluid type
Correct answer: B
Rationale: Pascal's principle states that when a pressure change is applied to a confined incompressible fluid, the resulting pressure change is transmitted undiminished throughout the fluid. This means that the pressure change will be the same at every point in the fluid, regardless of the container size or the type of fluid used. Therefore, choice B is the correct answer. Choices A, C, and D are incorrect because Pascal's principle specifically emphasizes the transmission of pressure without amplification, limitation by container size, or dependence on the fluid type.
5. A 1,000-kg car drives at 10 m/s around a circle with a radius of 50 m. What is the centripetal acceleration of the car?
- A. 2 m/s²
- B. 4 m/s²
- C. 5 m/s²
- D. 10 m/s²
Correct answer: A
Rationale: Centripetal acceleration is calculated using the formula a = v² / r, where v = 10 m/s and r = 50 m. Substituting these values: a = (10 m/s)² / 50 m = 100 / 50 = 2 m/s². Therefore, the correct answer is 2 m/s². Choice B, 4 m/s², is incorrect because it is not the result of the correct calculation. Choice C, 5 m/s², is incorrect as it does not match the calculated centripetal acceleration. Choice D, 10 m/s², is incorrect as it does not reflect the correct calculation based on the given values.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access