HESI A2
HESI A2 Physics Practice Test
1. The Prandtl number (Pr) is a dimensionless property relating:
- A. Viscosity and thermal diffusivity
- B. Density and pressure
- C. Surface tension and pressure
- D. Reynolds number and flow regime
Correct answer: A
Rationale: The Prandtl number (Pr) is a dimensionless number used to characterize fluid flow. It is the ratio of momentum diffusivity to thermal diffusivity. In simpler terms, it relates the ability of a fluid to conduct heat to its ability to conduct momentum. Therefore, the correct relationship is between viscosity and thermal diffusivity, making choice A the correct answer. Choices B, C, and D are incorrect because they do not represent the properties that the Prandtl number relates.
2. Bernoulli's principle for an incompressible, inviscid fluid in steady flow states that the mechanical energy, consisting of:
- A. Pressure (P) only, remains constant along a streamline.
- B. Velocity (v) only, remains constant along a streamline.
- C. P + ½ρv² (total mechanical energy), remains constant along a streamline
- D. Density (ρ) only, remains constant along a streamline.
Correct answer: C
Rationale: Bernoulli's principle states that the sum of pressure energy (P), kinetic energy per unit volume (½ρv²), and potential energy per unit volume remains constant along a streamline in an incompressible, inviscid fluid. This means the total mechanical energy of the fluid is conserved, making Choice C the correct answer. Choices A, B, and D are incorrect because Bernoulli's principle involves the conservation of the total mechanical energy, not just pressure, velocity, or density alone.
3. Which substance would be most affected by a change in temperature?
- A. Liquid nitrogen
- B. Salt crystals
- C. Hydrogen gas
- D. Iron filings
Correct answer: C
Rationale: Hydrogen gas would be most affected by a change in temperature because gases have a greater expansion or contraction in volume with changes in temperature compared to liquids or solids. When the temperature of hydrogen gas increases, its molecules gain kinetic energy and move faster, causing the gas to expand and its volume to increase. Conversely, when the temperature decreases, the gas molecules lose kinetic energy and move slower, leading to a decrease in volume. This property makes hydrogen gas highly sensitive to temperature changes compared to liquid nitrogen, salt crystals, or iron filings. Liquid nitrogen, salt crystals, and iron filings are less affected by temperature changes because their particles are closer together and have lower kinetic energy, resulting in minimal volume changes with temperature fluctuations.
4. The triple point of a substance is the specific temperature and pressure at which all three phases (solid, liquid, and gas) can coexist in thermodynamic equilibrium. Which of the following statements about the triple point is true?
- A. It can vary depending on the container size.
- B. It is a unique point for each pure substance.
- C. The pressure at the triple point can be zero for some substances.
- D. The temperature at the triple point can be above the boiling point of the liquid phase.
Correct answer: B
Rationale: The triple point is a unique temperature and pressure where all three phases (solid, liquid, and gas) of a pure substance can coexist in equilibrium. It is a constant for each substance and independent of container size. Choice A is incorrect because the triple point is a fixed point regardless of the container size. Choice C is incorrect as the pressure at the triple point is specific for each substance and will not be zero unless the substance has unique properties. Choice D is incorrect since the temperature at the triple point is precisely defined and cannot be above the boiling point of the liquid phase.
5. A 50-kg box of iron fishing weights is balanced at the edge of a table. Peter gives it a push, and it falls 2 meters to the floor. Which of the following statements is true?
- A. Once the box hits the floor, it loses both its kinetic and potential energy.
- B. The box had kinetic energy only when it was balanced at the edge of the table.
- C. The box had both kinetic and potential energy after it fell.
- D. Once the box hits the floor, it loses all its kinetic energy.
Correct answer: C
Rationale: When the box is balanced at the edge of the table, it has potential energy due to its position above the ground. As Peter gives it a push, and it falls 2 meters to the floor, the box then has both kinetic energy (due to its motion) and potential energy (due to gravity). Therefore, the correct statement is that the box had both kinetic and potential energy after it fell. Option A is incorrect because the box retains its energy forms even after hitting the floor. Option B is incorrect as the box has kinetic energy both before and after falling. Option D is incorrect as the box still possesses kinetic energy even after hitting the floor.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access