the prandtl number pr is a dimensionless property relating
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. The Prandtl number (Pr) is a dimensionless property relating:

Correct answer: A

Rationale: The Prandtl number (Pr) is a dimensionless number used to characterize fluid flow. It is the ratio of momentum diffusivity to thermal diffusivity. In simpler terms, it relates the ability of a fluid to conduct heat to its ability to conduct momentum. Therefore, the correct relationship is between viscosity and thermal diffusivity, making choice A the correct answer. Choices B, C, and D are incorrect because they do not represent the properties that the Prandtl number relates.

2. The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:

Correct answer: A

Rationale: The correct equation relating heat transfer (Q), mass (m), specific heat capacity (c), and change in temperature (ΔT) is Q = mcΔT. This equation states that the heat transfer is equal to the product of the mass, specific heat capacity, and temperature change. Therefore, the correct answer is B, as it correctly represents this relationship. Choices C and D do not correctly represent the relationship between these quantities and are therefore incorrect.

3. In a static fluid, pressure (P) at a depth (h) is governed by the hydrostatic equation:

Correct answer: A

Rationale: The correct formula for the pressure at a certain depth in a fluid according to the hydrostatic equation is P = ρgh. Here, ρ represents the fluid's density, g is the gravitational acceleration, and h is the depth. This formula shows that pressure increases linearly with the density of the fluid, the acceleration due to gravity, and the depth. Choices B, C, and D are incorrect because they do not accurately represent the relationship between pressure, density, gravitational acceleration, and depth in a static fluid.

4. At which point on a roller coaster does the car have the greatest potential energy?

Correct answer: B

Rationale: The correct answer is B, the highest peak. At the highest peak of the roller coaster, the car reaches its maximum height above the ground. This point represents the car's greatest potential energy because it has the highest potential to do work due to its elevated position. The potential energy is directly proportional to the height of an object, so the highest point on the roller coaster track corresponds to the car's greatest potential energy. Choices A, C, and D are incorrect because potential energy is highest at the peak due to its elevated position, not at the start of the ride, the lowest trough, or the end of the ride.

5. When a dielectric material is inserted between the plates of a charged capacitor, what will happen to the capacitance?

Correct answer: A

Rationale: When a dielectric material is inserted between the plates of a charged capacitor, the capacitance will increase. This is because the presence of a dielectric material reduces the electric field between the plates, allowing more charge to be stored for a given voltage, thus increasing the capacitance. Choice B is incorrect because adding a dielectric material increases capacitance. Choice C is incorrect because capacitance changes when a dielectric is added. Choice D is incorrect because the effect of a dielectric on capacitance is predictable.

Similar Questions

A 0-kg block on a table is given a push so that it slides along the table. If the block is accelerated at 6 m/s2, what was the force applied to the block?
Two objects attract each other with a gravitational force of 12 units. If you double the mass of both objects, what is the new force of attraction between them?
Power (P) represents the rate of work done. Which formula accurately depicts power?
Longitudinal waves have vibrations that move ___________.
According to the Clausius inequality, for a cyclic process involving heat transfer between a system and its surroundings at a single constant temperature (T), the following inequality must hold true:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses