HESI A2
HESI Exams Quizlet Physics
1. What is the primary factor responsible for generating lift on an airplane wing?
- A. Propulsion force generated by the engines
- B. Buoyant forces acting on the entire aircraft
- C. Drag reduction achieved through streamlining
- D. Application of Bernoulli's principle to the airfoil's shape
Correct answer: D
Rationale: The primary factor responsible for generating lift on an airplane wing is the application of Bernoulli's principle. This principle states that the air moving over the curved top surface of the wing has to travel faster, leading to reduced pressure above the wing and creating lift. Engines provide thrust for propulsion, not lift. Buoyant forces are more relevant to lighter-than-air aircraft like balloons or airships, not airplanes. While drag reduction through streamlining is important for efficiency, it is not the primary factor in lift generation. Therefore, the correct answer is D.
2. A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
- A. 660 amperes
- B. 150 amperes
- C. 6.5 amperes
- D. 0.15 amperes
Correct answer: C
Rationale: To calculate the current being drawn by the refrigerator, you can use the formula: Current (I) = Power (P) / Voltage (V). Given that the power of the refrigerator is 780 watts and the voltage is 120 volts, you can plug these values into the formula to find the current: I = 780 watts / 120 volts = 6.5 amperes. Therefore, the current being drawn by the 780-watt refrigerator is 6.5 amperes. Choice A, 660 amperes, is incorrect as it is significantly higher than the correct answer. Choice B, 150 amperes, is also incorrect and too high. Choice D, 0.15 amperes, is incorrect as it is too low. The correct answer is 6.5 amperes.
3. When a charged particle moves through a vacuum at a constant speed, it generates:
- A. An electric field only
- B. A magnetic field only
- C. Both an electric and magnetic field
- D. Neither an electric nor magnetic field
Correct answer: C
Rationale: A moving charged particle generates both an electric field and a magnetic field. The electric field is due to the charge itself, and the magnetic field is produced by the motion of the charge. Choice A is incorrect because a moving charged particle also generates a magnetic field. Choice B is incorrect because a moving charged particle generates both electric and magnetic fields. Choice D is incorrect as a moving charged particle generates fields due to its charge and motion.
4. Which of the following describes a vector quantity?
- A. 5 miles per hour due southwest
- B. 5 miles per hour
- C. 5 miles
- D. None of the above
Correct answer: A
Rationale: A vector quantity is characterized by both magnitude and direction. In the provided options, choice A, '5 miles per hour due southwest,' fits this definition as it includes both the magnitude (5 miles per hour) and the direction (southwest), making it a vector quantity. Choices B and C only provide the magnitude without indicating any direction, hence they do not represent vector quantities.
5. In a scenario where a transverse wave transports energy from north to south, in what direction do the particles in the medium move?
- A. Only north to south
- B. Both northward and southward
- C. Only east to west
- D. Both eastward and westward
Correct answer: B
Rationale: In a transverse wave, particles of the medium move perpendicular to the direction of energy transport. When the wave transports energy from north to south, the particles in the medium oscillate up and down, causing them to move both northward and southward. Choice A is incorrect because the particles move in both directions, not only from north to south. Choices C and D are incorrect as they mention directions that are not relevant to the scenario described in the question.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access