HESI A2
HESI Exams Quizlet Physics
1. A 0-kg block on a table is given a push so that it slides along the table. If the block is accelerated at 6 m/s2, what was the force applied to the block?
- A. 0 N
- B. 3 N
- C. 6 N
- D. The answer cannot be determined from the information given.
Correct answer: A
Rationale: According to Newton's second law of motion, F=ma. Since the block has a mass of 0 kg, the force applied must be 0 N, as no force is needed to move an object with zero mass.
2. A 60-watt lightbulb is powered by a 110-volt power source. What is the current being drawn?
- A. 0.55 amperes
- B. 1.83 amperes
- C. 50 amperes
- D. 6,600 amperes
Correct answer: A
Rationale: To calculate the current being drawn, use the formula I = P / V, where I is the current, P is the power in watts, and V is the voltage. Substituting the given values, I = 60 / 110 ≈ 0.55 amperes. Therefore, the current being drawn by the 60-watt lightbulb is approximately 0.55 amperes. Choice B, 1.83 amperes, is incorrect as it does not match the calculated value. Choices C and D, 50 amperes and 6,600 amperes, are significantly higher values and do not align with the expected current draw of a 60-watt lightbulb powered by a 110-volt source.
3. The amount of energy lost in a circuit due to electrical resistance is dissipated in the form of:
- A. Light
- B. Sound
- C. Heat
- D. Mechanical work
Correct answer: C
Rationale: When electrical current flows through a circuit with resistance, energy is lost in the form of heat due to the resistance encountered by the electrons. This dissipation of energy as heat is a common phenomenon in electrical circuits and is known as Joule heating. Therefore, the correct answer is 'Heat.' Light, sound, and mechanical work are not typical forms in which energy is lost due to electrical resistance. Light is not a direct result of energy dissipation in electrical circuits, sound is not a form of energy dissipation in this context, and mechanical work pertains to the application of physical force and not the dissipation of energy due to resistance.
4. How might the energy use of an appliance be expressed?
- A. Power = energy × time
- B. Time + energy = power
- C. Energy = power × time
- D. Energy/power = time
Correct answer: C
Rationale: The energy use of an appliance can be expressed using the formula Energy = Power × Time. In this formula, Energy represents the amount of electricity consumed by the appliance, Power indicates the rate at which the appliance uses electricity (measured in watts), and Time represents the duration for which the appliance is being used (measured in hours). By multiplying the power rating of the appliance by the time it is in use, one can calculate the total energy consumed. Option C is the correct choice because it accurately represents the relationship between power, time, and energy. Choices A, B, and D present incorrect representations of the relationship between energy, power, and time, making them wrong answers.
5. Given the four wires described here, which would you expect to have the greatest resistance?
- A. 1 km of American wire gauge 1; diameter 7.35 mm
- B. 1 km of American wire gauge 2; diameter 6.54 mm
- C. 1 km of American wire gauge 3; diameter 5.83 mm
- D. 1 km of American wire gauge 4; diameter 5.19 mm
Correct answer: D
Rationale: The wire with the greatest resistance is the one with the smallest diameter, as resistance is inversely proportional to cross-sectional area. Gauge 4 with a 5.19 mm diameter has the smallest diameter and, therefore, the greatest resistance. Choice A, B, and C have larger diameters compared to choice D, so they would have lower resistance values.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access