HESI A2
HESI A2 Physics
1. A circular running track has a circumference of 2,500 meters. What is the radius of the track?
- A. 1,000 m
- B. 400 m
- C. 25 m
- D. 12 m
Correct answer: B
Rationale: The radius of a circular track can be calculated using the formula: Circumference = 2 × π × radius. Given that the circumference of the track is 2,500 m, we can plug this into the formula and solve for the radius: 2,500 = 2 × π × radius. Dividing both sides by 2π gives: radius = 2,500 / (2 × 3.1416) ≈ 397.89 m. Therefore, the closest answer is 400 m, making option B the correct choice. Option A (1,000 m) is too large, option C (25 m) is too small, and option D (12 m) is significantly smaller than the calculated radius.
2. Household alternating current typically has a frequency of 60 Hz. Which statement is true?
- A. The circuit is suitable for lighting 60-watt bulbs.
- B. Circuits in the home may carry a current of 60 amperes.
- C. The expected voltage drop is 60 volts per meter.
- D. Electrons complete a cycle 60 times per second.
Correct answer: D
Rationale: The correct answer is D. Electrons complete a cycle 60 times per second when the frequency of the current is 60 Hz. This frequency indicates that the current changes direction 60 times per second, causing the electrons to complete a full cycle back and forth through the circuit at the same rate. Choice A is incorrect because the power rating of a bulb (in watts) is not directly related to the frequency of the current. Choice B is incorrect as typical household circuits do not carry currents as high as 60 amperes. Choice C is incorrect as the expected voltage drop is not measured in volts per meter for household alternating current circuits.
3. Jon walks all the way around a rectangular park that is 1 km × 2 km. Which statement is true about Jon’s walk?
- A. The displacement of his walk is 3 kilometers, and the distance traveled is 0 kilometers.
- B. The displacement of his walk is 0 kilometers, and the distance traveled is 16 kilometers.
- C. The displacement of his walk is 6 kilometers, and the distance traveled is 0 kilometers.
- D. The displacement of his walk is 0 kilometers, and the distance traveled is 6 kilometers.
Correct answer: D
Rationale: Jon walks all the way around a rectangular park that is 1 km × 2 km, which means he walks a total distance of 6 kilometers (1 km + 2 km + 1 km + 2 km = 6 km). However, the displacement of his walk is 0 kilometers because he starts and ends at the same point after completing the rectangular path around the park. Displacement refers to the change in position from the starting point to the ending point, regardless of the actual distance traveled. Choice A is incorrect because the total distance traveled by Jon is 6 kilometers, not 0 kilometers. Choice B is incorrect as the displacement is not 0 kilometers, and the distance traveled is 6 kilometers, not 16 kilometers. Choice C is incorrect because the displacement is 0 kilometers, and the distance traveled is 6 kilometers, not 0 kilometers.
4. A closed system undergoes a cyclic process, returning to its initial state. What can be said about the net work done (Wnet) by the system over the entire cycle?
- A. Wnet is always positive.
- B. Wnet is always negative.
- C. Wnet can be positive, negative, or zero.
- D. Wnet is equal to the total heat transferred into the system (dQ ≠ 0 for a cycle).
Correct answer: C
Rationale: For a closed system undergoing a cyclic process and returning to its initial state, the net work done (Wnet) over the entire cycle can be positive, negative, or zero. This is because the work done is determined by the area enclosed by the cycle on a P-V diagram, and this area can be above, below, or intersecting the zero work axis, leading to positive, negative, or zero net work done. Choice A is incorrect because Wnet is not always positive; it depends on the specific path taken on the P-V diagram. Choice B is incorrect as Wnet is not always negative; it varies based on the enclosed area. Choice D is incorrect because Wnet is not necessarily equal to the total heat transferred into the system; it depends on the specifics of the cycle and is not a direct relationship.
5. If the force acting on an object is doubled, how does its acceleration change?
- A. It remains the same.
- B. It is halved.
- C. It is doubled.
- D. It is eliminated.
Correct answer: C
Rationale: According to Newton's second law of motion, the acceleration of an object is directly proportional to the force acting on it. Therefore, if the force acting on an object is doubled, its acceleration will also double. This relationship is expressed by the equation F = ma, where F is the force, m is the mass of the object, and a is the acceleration. When the force (F) is doubled, the acceleration (a) will also double, assuming the mass remains constant. Choice A is incorrect because acceleration changes with a change in force. Choice B is incorrect because acceleration and force are directly proportional. Choice D is incorrect because increasing the force acting on an object does not eliminate its acceleration; instead, it results in an increase in acceleration, as per Newton's second law.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access