HESI A2
HESI A2 Physics
1. A circular running track has a circumference of 2,500 meters. What is the radius of the track?
- A. 1,000 m
- B. 400 m
- C. 25 m
- D. 12 m
Correct answer: B
Rationale: The radius of a circular track can be calculated using the formula: Circumference = 2 × π × radius. Given that the circumference of the track is 2,500 m, we can plug this into the formula and solve for the radius: 2,500 = 2 × π × radius. Dividing both sides by 2π gives: radius = 2,500 / (2 × 3.1416) ≈ 397.89 m. Therefore, the closest answer is 400 m, making option B the correct choice. Option A (1,000 m) is too large, option C (25 m) is too small, and option D (12 m) is significantly smaller than the calculated radius.
2. In the mechanical power equation P = E / t, power is measured in ___________.
- A. ohms
- B. Joules
- C. volts
- D. watts
Correct answer: D
Rationale: In the mechanical power equation P = E / t, power is measured in watts. Watts are the standard unit of power in the International System of Units (SI), named after the Scottish engineer James Watt. Watts are defined as joules per second, reflecting the rate at which energy is transferred or converted. Ohms (choice A) are the unit of electrical resistance, Joules (choice B) are the unit of energy, and volts (choice C) are the unit of electric potential difference. Therefore, the correct answer is watts as it directly relates to power in the given equation.
3. What is the primary factor responsible for generating lift on an airplane wing?
- A. Propulsion force generated by the engines
- B. Buoyant forces acting on the entire aircraft
- C. Drag reduction achieved through streamlining
- D. Application of Bernoulli's principle to the airfoil's shape
Correct answer: D
Rationale: The primary factor responsible for generating lift on an airplane wing is the application of Bernoulli's principle. This principle states that the air moving over the curved top surface of the wing has to travel faster, leading to reduced pressure above the wing and creating lift. Engines provide thrust for propulsion, not lift. Buoyant forces are more relevant to lighter-than-air aircraft like balloons or airships, not airplanes. While drag reduction through streamlining is important for efficiency, it is not the primary factor in lift generation. Therefore, the correct answer is D.
4. A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?
- A. 3 cm
- B. 6 cm
- C. 12 cm
- D. 30 cm
Correct answer: B
Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.
5. The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:
- A. Q = cΔT
- B. Q = mcΔT
- C. Q = c / mΔT
- D. Q = ΔT / mc
Correct answer: A
Rationale: The correct equation relating heat transfer (Q), mass (m), specific heat capacity (c), and change in temperature (ΔT) is Q = mcΔT. This equation states that the heat transfer is equal to the product of the mass, specific heat capacity, and temperature change. Therefore, the correct answer is B, as it correctly represents this relationship. Choices C and D do not correctly represent the relationship between these quantities and are therefore incorrect.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access