in a parallel circuit the through each component is the same
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. In a parallel circuit, the ___________ through each component is the same.

Correct answer: A

Rationale: In a parallel circuit, the current through each component is the same. This is because the components in a parallel circuit are connected across the same voltage source, so they all experience the same voltage across their terminals. The total current entering the parallel circuit is then split up among the various components, but the current through each component remains the same as the total current. Choices B, C, and D are incorrect. In a parallel circuit, voltage across each component may vary, resistance may differ, and wattage is related to power, not the equality of current through each component.

2. Capillarity describes the tendency of fluids to rise or fall in narrow tubes. This phenomenon arises from the interplay of:

Correct answer: D

Rationale: Capillarity occurs due to surface tension and intermolecular forces between the liquid and the walls of the narrow tube. These forces cause the liquid to rise or fall depending on the cohesion and adhesion properties. Surface tension at the liquid-gas interface and intermolecular forces are responsible for capillary action, making choice D the correct answer. Choices A, B, and C are incorrect as they do not directly relate to the specific forces involved in capillarity.

3. Which object below has the same density?

Correct answer: A

Rationale: Density is calculated by dividing the mass of an object by its volume. The density of object A is 6.5 g / 16.25 cm3 = 0.4 g/cm3. The density of object B is 80 g / 32 cm3 = 2.5 g/cm3. The density of object C is 48 g / 22 cm3 = 2.18 g/cm3. The density of object D is 100 g / 250 cm3 = 0.4 g/cm3. Objects A and D have the same density of 0.4 g/cm3. Therefore, the correct answer is A as it has the same density as object D, making them the only objects with a density of 0.4 g/cm3.

4. In terms of electrical conductivity, semiconductors fall between

Correct answer: A

Rationale: Semiconductors have electrical conductivities that lie between those of conductors (high conductivity) and insulators (low conductivity). This positioning makes choice A, 'Conductors and insulators,' the correct answer. Choice B, 'Conductors and superconductors,' is incorrect because superconductors have perfect conductivity, not intermediate like semiconductors. Choice C, 'Insulators and dielectrics,' is incorrect because dielectrics are a type of insulator, so it doesn't show the progression from high to low conductivity. Choice D, 'Superconductors and insulators,' is incorrect because superconductors have the highest conductivity, opposite to the role of semiconductors.

5. A 110-volt hair dryer delivers 1,525 watts of power. How many amperes does it draw?

Correct answer: D

Rationale: To determine the amperes drawn by the hair dryer, we use the formula: Amperes = Watts / Volts. The hair dryer operates at 1,525 watts with 110 volts. Dividing 1,525 watts by 110 volts yields 13.9 amperes. Therefore, the correct answer is 13.9 amperes. Choices A, B, and C are incorrect because they do not result from the correct calculation using the formula.

Similar Questions

A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?
A 50-kg box of iron fishing weights is balanced at the edge of a table. Peter gives it a push, and it falls 2 meters to the floor. Which of the following statements is true?
Diamagnetism refers to a material's weak:
Entropy (S) is a thermodynamic property related to the system's disorder. According to the second law of thermodynamics, in a spontaneous process:
Cavitation is a phenomenon observed in fluids when the pressure falls below its:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses