which of these intermolecular forces would have the lowest boiling point
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. Which of these intermolecular forces would result in the lowest boiling point?

Correct answer: B

Rationale: The London dispersion force is the weakest intermolecular force among the options provided. These forces are present in all molecules and are caused by temporary fluctuations in electron density, resulting in temporary dipoles. Since London dispersion forces are generally weaker than dipole-dipole interactions, Keesom interactions, and hydrogen bonding, a substance with London dispersion forces as the primary intermolecular force would have the lowest boiling point due to the weaker intermolecular forces holding the molecules together. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding are stronger intermolecular forces compared to London dispersion forces, resulting in higher boiling points for substances that exhibit these interactions.

2. Which one is not a hydrocarbon?

Correct answer: B

Rationale: The correct answer is B, Pyridine (C5H5N). Pyridine is not a hydrocarbon because it contains nitrogen (N) in its molecular structure, in addition to carbon (C) and hydrogen (H) atoms. Hydrocarbons consist solely of carbon and hydrogen atoms. Methane (CH4), ethane (C2H6), and propane (C3H8) are all examples of hydrocarbons as they only contain carbon and hydrogen atoms, making them organic compounds known for their combustion properties.

3. What determines polarity in a molecule?

Correct answer: C

Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.

4. Which of the following types of matter changes in volume with changes in temperature and pressure?

Correct answer: B

Rationale: A gas changes its volume with changes in temperature and pressure due to the particles moving more rapidly at higher temperatures, and pressure affects the space between particles. Liquids have a relatively fixed volume but take the shape of their container. Solids have a definite shape and volume, so they do not change volume with changes in temperature and pressure. Plasma is a state of matter where particles are highly energized and do not have a fixed volume, but it does not exhibit volume changes with temperature and pressure variations.

5. Which element has the highest atomic number?

Correct answer: A

Rationale: The correct answer is Uranium. The atomic number represents the number of protons in an atom's nucleus. Among the options provided, Uranium has the highest atomic number, which is 92. Hydrogen has an atomic number of 1, Radon has an atomic number of 86, and Bismuth has an atomic number of 83. Therefore, Uranium is the element with the highest atomic number in the given choices.

Similar Questions

Which type of chemical reaction involves an active metal reacting with an ionic compound to create a new compound?
In what type of covalent compounds are dispersion forces typically found?
How many moles of potassium bromide are in 25 mL of a 4 M KBr solution?
What charge do Group VIA elements typically have?
Which of these elements has the greatest atomic mass?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses