HESI A2
HESI A2 Physics Quizlet
1. When a small object floats on the surface of a liquid, the surface tension creates a:
- A. Buoyant force acting upwards
- B. Pressure difference causing sinking
- C. Drag force opposing motion
- D. Restoring force towards equilibrium
Correct answer: D
Rationale: Surface tension creates a restoring force that holds the object on the surface. The liquid's surface behaves like a stretched membrane, and when disturbed, it tends to return the object to its original position, creating a restoring force. The other choices are incorrect: A buoyant force acts on objects submerged in a fluid, not floating on the surface; pressure differences usually affect sinking objects, not floating ones; drag force is a resistance force that opposes motion, not related to surface tension.
2. According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to what factor?
- A. the gravitational constant
- B. the distance between them
- C. the product of their masses
- D. the square of the distance between them
Correct answer: C
Rationale: According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to the product of their masses. The equation is: F = G × (m₁ × m₂) / r², where F is the gravitational force, G is the gravitational constant, m₁ and m₂ are the masses of the two objects, and r is the distance between them. Choice A is incorrect because the gravitational constant is a constant value. Choice B is incorrect because the distance between the objects affects the strength of the gravitational force inversely proportional to the square of the distance, not directly proportional. Choice D is incorrect as it represents the inverse square law, where the gravitational force decreases with the square of the distance between the objects.
3. Marilyn is driving to a wedding. She drives 4 miles south before realizing that she left the gift at home. She makes a U-turn, returns home to pick up the gift, and sets out again driving south. This time, she drives 1 mile out of her way to pick up a friend. From there, they continue 5 miles more to the wedding. Which of these statements is true about Marilyn’s trip?
- A. The displacement of her trip is 6 miles, and the distance traveled is 6 miles.
- B. The displacement of her trip is 14 miles, and the distance traveled is 14 miles.
- C. The displacement of her trip is 8 miles, and the distance traveled is 14 miles.
- D. The displacement of her trip is 6 miles, and the distance traveled is 14 miles.
Correct answer: C
Rationale: Marilyn’s displacement is calculated based on her final position relative to the starting point. She drives 1 mile to pick up her friend, then 5 miles more to the wedding, totaling 6 miles after returning to her home. So, the correct displacement is 8 miles south from her starting point (4 miles to the gift + 4 miles return + 1 mile to the friend + 5 miles to the wedding). The total distance traveled is 14 miles (adding all the distances). Choice A is incorrect because it miscalculates the displacement. Choice B is incorrect as it overestimates both the displacement and distance traveled. Choice D is incorrect as it underestimates the displacement.
4. A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?
- A. 31 cm
- B. 40 cm
- C. 50 cm
- D. 56 cm
Correct answer: A
Rationale: When the 12 N force stretches the spring from 25 cm to 28 cm, it causes a length increase of 28 cm - 25 cm = 3 cm. Therefore, each newton of applied force causes an extension of 3 cm / 12 N = 0.25 cm/N. If the force is doubled to 24 N, the spring would extend by 24 N × 0.25 cm/N = 6 cm more than its original length of 25 cm. Thus, the new length of the spring would be 25 cm + 6 cm = 31 cm. Choice A, 31 cm, is the correct answer as calculated. Choices B, C, and D are incorrect as they do not consider the relationship between force and extension in the spring, leading to incorrect calculations of the new length.
5. Why are boats more buoyant in salt water than in fresh water?
- A. Salt decreases the mass of the boats.
- B. Salt increases the volume of the water.
- C. Salt affects the density of the boats.
- D. Salt increases the density of the water.
Correct answer: D
Rationale: Salt increases the density of water, making saltwater more buoyant than freshwater. The higher density of saltwater provides more lift to a boat, enabling it to float more easily compared to in freshwater. Choice A is incorrect because salt does not affect the mass of the boats. Choice B is incorrect as salt does not increase the volume of water. Choice C is incorrect since salt affects the density of water, not the boats themselves. Therefore, the correct answer is that salt increases the density of the water, resulting in boats being more buoyant in salt water than in fresh water.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access