HESI A2
HESI A2 Physics
1. The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
- A. F_b = W, the object's weight
- B. F_b = W_d, the weight of the fluid displaced by the object
- C. F_b = ρ, the density of the fluid
- D. F_b = V, the object's volume
Correct answer: B
Rationale: The correct formula for the buoyant force experienced by an object submerged in a fluid is given by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. This is represented by the formula F_b = W_d, where W_d is the weight of the fluid displaced by the object. This force acts in the opposite direction to gravity and is responsible for objects floating or sinking in fluids. Choice A is incorrect because the buoyant force is not equal to the object's weight. Choice C is incorrect because the density of the fluid is not directly related to the buoyant force. Choice D is incorrect because the object's volume is not the determining factor for the buoyant force.
2. When the heat of a reaction is negative, which statement is true?
- A. The products have less energy and are less stable.
- B. The products have more energy and are more stable.
- C. The products have less energy and are more stable.
- D. The products have more energy and are less stable.
Correct answer: C
Rationale: When the heat of a reaction is negative, it indicates that the reaction releases energy in the form of heat. This means that the products have lower energy levels compared to the reactants. Lower energy levels are associated with greater stability in chemical systems. Therefore, when the heat of a reaction is negative, the products are more stable due to having less energy than the reactants. Choice A, stating that the products have less energy and are less stable, is incorrect as lower energy levels imply greater stability. Choice B, stating that the products have more energy and are more stable, is incorrect as lower energy levels lead to higher stability. Choice D, stating that the products have more energy and are less stable, is incorrect as lower energy levels are associated with higher stability.
3. An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
- A. 0.6 N
- B. 0.18 N
- C. 180 N
- D. 9 × 10−12 N
Correct answer: B
Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k × (|q1 × q2|) / r² Where: F is the force k is Coulomb’s constant (8.99 × 10⁹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 × 10⁹) × (3 × 10⁻⁶) × (2 × 10⁻⁶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.
4. When two long, parallel wires carry currents in the same direction, the wires will experience a force of:
- A. An unpredictable force depending on wire material
- B. Repulsion
- C. No force
- D. Attraction
Correct answer: D
Rationale: When two wires carry current in the same direction, they create magnetic fields that interact with each other. This interaction results in an attractive force between the wires due to the alignment of their magnetic fields. Choice A is incorrect because the force can be predicted based on the direction of the currents and the magnetic fields produced. Choice B is incorrect because when currents flow in the same direction, they do not repel each other. Choice C is incorrect because there is indeed a force present due to the interaction of magnetic fields, resulting in attraction between the wires.
5. The specific heat capacity of tin is 217 J/(g°C). Which of these materials would require about twice as much heat as tin to increase the temperature of a sample by 1°C?
- A. Copper [0.3844 J/(g°C)]
- B. Iron [0.449 J/(g°C)]
- C. Gold [0.1291 J/(g°C)]
- D. Aluminum [0.904 J/(g°C)]
Correct answer: D
Rationale: The correct answer is D: Aluminum. The specific heat capacity of aluminum is 0.904 J/(g°C), which is approximately 4 times that of tin. For a material to require about twice as much heat as tin to increase the temperature by 1°C, it should have a specific heat capacity roughly double that of tin. Therefore, aluminum fits this criterion better than the other options. Gold has a much lower specific heat capacity than tin, so it would require less, not more, heat to increase the temperature by 1°C. Copper and Iron also have specific heat capacities lower than tin, making them incorrect choices for requiring twice as much heat as tin.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access