HESI A2
HESI A2 Physics
1. The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
- A. F_b = W, the object's weight
- B. F_b = W_d, the weight of the fluid displaced by the object
- C. F_b = ρ, the density of the fluid
- D. F_b = V, the object's volume
Correct answer: B
Rationale: The correct formula for the buoyant force experienced by an object submerged in a fluid is given by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. This is represented by the formula F_b = W_d, where W_d is the weight of the fluid displaced by the object. This force acts in the opposite direction to gravity and is responsible for objects floating or sinking in fluids. Choice A is incorrect because the buoyant force is not equal to the object's weight. Choice C is incorrect because the density of the fluid is not directly related to the buoyant force. Choice D is incorrect because the object's volume is not the determining factor for the buoyant force.
2. Capillarity describes the tendency of fluids to rise or fall in narrow tubes. This phenomenon arises from the interplay of:
- A. Buoyancy and pressure differentials
- B. Density variations and compressibility of the fluid
- C. Viscous dissipation and inertial effects
- D. Surface tension at the liquid-gas interface and intermolecular forces
Correct answer: D
Rationale: Capillarity occurs due to surface tension and intermolecular forces between the liquid and the walls of the narrow tube. These forces cause the liquid to rise or fall depending on the cohesion and adhesion properties. Surface tension at the liquid-gas interface and intermolecular forces are responsible for capillary action, making choice D the correct answer. Choices A, B, and C are incorrect as they do not directly relate to the specific forces involved in capillarity.
3. An object with a mass of 45 kg has momentum equal to 180 kg⋅m/s. What is the object’s velocity?
- A. 4 m/s
- B. 8.1 km/s
- C. 17.4 km/h
- D. 135 m/s
Correct answer: A
Rationale: The momentum of an object is calculated by multiplying its mass and velocity. Mathematically, momentum = mass x velocity. Given that the mass is 45 kg and the momentum is 180 kg⋅m/s, we can rearrange the formula to solve for velocity: velocity = momentum / mass. Plugging in the values, velocity = 180 kg⋅m/s / 45 kg = 4 m/s. Therefore, the object's velocity is 4 m/s. Choices B, C, and D are incorrect because they do not align with the correct calculation based on the given mass and momentum values.
4. Which of these objects has the greatest momentum?
- A. A 1,250-kg car moving at 5 m/s
- B. An 80-kg person running at 4 m/s
- C. A 10-kg piece of meteorite moving at 600 m/s
- D. A o.5-kg rock moving at 40 m/s
Correct answer: A
Rationale: Momentum is the product of mass and velocity. The car has the highest momentum because it has the largest mass and a significant velocity.
5. When a gas is compressed isothermally, we can say that:
- A. The gas performs work on the surroundings, and its internal energy increases.
- B. The gas performs work on the surroundings, and its internal energy decreases.
- C. The surroundings perform work on the gas, and its internal energy increases.
- D. The surroundings perform work on the gas, and its internal energy decreases.
Correct answer: D
Rationale: When a gas is compressed isothermally, the surroundings perform work on the gas. In this process, since the temperature remains constant (isothermal), the internal energy of the gas does not change. Therefore, the correct answer is that the surroundings perform work on the gas, and its internal energy decreases. Choices A, B, and C are incorrect because they incorrectly describe the direction of work and the change in internal energy during an isothermal compression.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access