HESI A2
HESI Exams Quizlet Physics
1. Which characteristic does a transverse wave not have?
- A. a compression
- B. an amplitude
- C. a frequency
- D. a wavelength
Correct answer: A
Rationale: A transverse wave does not have a compression because transverse waves move perpendicular to the direction of the oscillation. In a transverse wave, the particles move up and down, causing crests and troughs, without creating compressions. Compressions are characteristic of longitudinal waves where the particles move parallel to the direction of the wave. The other choices (B, C, and D) are characteristics that transverse waves possess: amplitude is the maximum displacement of a wave from its equilibrium position, frequency is the number of complete oscillations a wave makes in a given time, and wavelength is the distance between two consecutive points in a wave that are in the same phase.
2. Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:
- A. Zero shear stress at any strain rate
- B. Linear relationship between shear stress and strain rate (Newtonian)
- C. Non-linear relationship between shear stress and strain rate (Non-Newtonian)
- D. High dependence of viscosity on temperature
Correct answer: A
Rationale: An ideal fluid, often referred to as an inviscid fluid, is a theoretical concept used in fluid mechanics to simplify calculations. It is characterized by having zero shear stress at any strain rate. In reality, such fluids do not exist, but they serve as a useful starting point for understanding fluid behavior in idealized situations. Choice B is incorrect because a linear relationship between shear stress and strain rate defines a Newtonian fluid, not an ideal fluid. Choice C is incorrect because a non-linear relationship between shear stress and strain rate characterizes Non-Newtonian fluids, not ideal fluids. Choice D is incorrect because the high dependence of viscosity on temperature is a characteristic seen in real fluids and does not define an ideal fluid.
3. If the force acting on an object is doubled, how does its acceleration change?
- A. It remains the same.
- B. It is halved.
- C. It is doubled.
- D. It is eliminated.
Correct answer: C
Rationale: According to Newton's second law of motion, the acceleration of an object is directly proportional to the force acting on it. Therefore, if the force acting on an object is doubled, its acceleration will also double. This relationship is expressed by the equation F = ma, where F is the force, m is the mass of the object, and a is the acceleration. When the force (F) is doubled, the acceleration (a) will also double, assuming the mass remains constant. Choice A is incorrect because acceleration changes with a change in force. Choice B is incorrect because acceleration and force are directly proportional. Choice D is incorrect because increasing the force acting on an object does not eliminate its acceleration; instead, it results in an increase in acceleration, as per Newton's second law.
4. The Reynolds number (Re) is a dimensionless quantity used to characterize:
- A. Fluid density
- B. Flow regime (laminar vs. turbulent)
- C. Surface tension effects
- D. Buoyancy force magnitude
Correct answer: B
Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.
5. In a circuit with three same-size resistors wired in series to a 9-V power supply, producing 1 amp of current, what is the resistance of each resistor?
- A. 9 ohms
- B. 6 ohms
- C. 3 ohms
- D. 1 ohm
Correct answer: C
Rationale: In a series circuit, the total resistance is the sum of the individual resistances. With a total voltage of 9 V and a current of 1 A, we can use Ohm's Law (V = I × R) to find the total resistance: Total resistance = 9 V / 1 A = 9 ohms. Since the resistors are identical and wired in series, the total resistance is evenly divided among the three resistors: Resistance of each resistor = 9 ohms / 3 = 3 ohms. Thus, the resistance of each resistor is 3 ohms. Therefore, the correct answer is 3 ohms. Choice A, 9 ohms, is incorrect because this would be the total resistance of all three resistors combined in series. Choice B, 6 ohms, is incorrect as it does not account for the equal distribution of resistance in a series circuit. Choice D, 1 ohm, is incorrect as it is too low for resistors in series with a total resistance of 9 ohms.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access