HESI A2
HESI A2 Physics
1. Which vehicle has the greatest momentum?
- A. A 9,000-kg railroad car traveling at 3 m/s
- B. A 2,000-kg automobile traveling at 24 m/s
- C. A 1,500-kg MINI Coupe traveling at 29 m/s
- D. A 500-kg glider traveling at 89 m/s
Correct answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m × v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg × 3 m/s = 27,000 kg·m/s B: 2,000 kg × 24 m/s = 48,000 kg·m/s C: 1,500 kg × 29 m/s = 43,500 kg·m/s D: 500 kg × 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.
2. Psychrometrics is a branch of thermodynamics that deals with the properties of:
- A. Ideal gases.
- B. Magnetic materials.
- C. Mixtures of moist air and water vapor.
- D. Nuclear reactions.
Correct answer: C
Rationale: Psychrometrics is the study of the physical and thermodynamic properties of gas-vapor mixtures, especially mixtures of moist air and water vapor. This branch of thermodynamics focuses on the relationships between temperature, pressure, humidity, and other properties of these mixtures. Choice A, ideal gases, is incorrect because psychrometrics specifically deals with gas-vapor mixtures, not ideal gases. Choice B, magnetic materials, and Choice D, nuclear reactions, are unrelated to psychrometrics and thermodynamics, making them incorrect. Understanding psychrometrics is crucial in fields like heating, ventilation, air conditioning, and refrigeration (HVAC&R) to design systems that effectively control air quality, comfort, and temperature.
3. Which conclusion can be drawn from Ohm’s law?
- A. Voltage and current are inversely proportional when resistance is constant.
- B. The ratio of the potential difference between the ends of a conductor to current is a constant, R.
- C. Voltage is the amount of charge that passes through a point per second.
- D. Power (P) can be calculated by multiplying current (I) by voltage (V).
Correct answer: B
Rationale: Ohm's law states that the ratio of the potential difference (voltage) between the ends of a conductor to the current flowing through it is a constant. Mathematically, this is represented as V = I x R, where V is voltage, I is current, and R is the constant resistance. Therefore, the correct conclusion that can be drawn from Ohm's law is that the ratio of the potential difference between the ends of a conductor to current is a constant, denoted as R. This relationship is fundamental to understanding the behavior of electrical circuits and the effect of resistance on voltage and current. Choice A is incorrect because Ohm's law actually states that voltage and current are directly proportional when resistance is constant. Choice C is incorrect because voltage is not the amount of charge that passes through a point per second; rather, it is the electric potential energy per unit charge. Choice D is incorrect because although power (P) can be calculated by multiplying current (I) by voltage (V), this is not a conclusion directly drawn from Ohm's law.
4. In terms of electrical conductivity, semiconductors fall between
- A. Conductors and insulators
- B. Conductors and superconductors
- C. Insulators and dielectrics
- D. Superconductors and insulators
Correct answer: A
Rationale: Semiconductors have electrical conductivities that lie between those of conductors (high conductivity) and insulators (low conductivity). This positioning makes choice A, 'Conductors and insulators,' the correct answer. Choice B, 'Conductors and superconductors,' is incorrect because superconductors have perfect conductivity, not intermediate like semiconductors. Choice C, 'Insulators and dielectrics,' is incorrect because dielectrics are a type of insulator, so it doesn't show the progression from high to low conductivity. Choice D, 'Superconductors and insulators,' is incorrect because superconductors have the highest conductivity, opposite to the role of semiconductors.
5. A 50-kg box of iron fishing weights is balanced at the edge of a table. Peter gives it a push, and it falls 2 meters to the floor. Which of the following statements is true?
- A. Once the box hits the floor, it loses both its kinetic and potential energy.
- B. The box had kinetic energy only when it was balanced at the edge of the table.
- C. The box had both kinetic and potential energy after it fell.
- D. Once the box hits the floor, it loses all its kinetic energy.
Correct answer: C
Rationale: When the box is balanced at the edge of the table, it has potential energy due to its position above the ground. As Peter gives it a push, and it falls 2 meters to the floor, the box then has both kinetic energy (due to its motion) and potential energy (due to gravity). Therefore, the correct statement is that the box had both kinetic and potential energy after it fell. Option A is incorrect because the box retains its energy forms even after hitting the floor. Option B is incorrect as the box has kinetic energy both before and after falling. Option D is incorrect as the box still possesses kinetic energy even after hitting the floor.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access