in which state of matter are particles packed tightly together in a fixed position
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Questions

1. In which state of matter are particles packed tightly together in a fixed position?

Correct answer: B

Rationale: In a 'solid' state, particles are tightly packed in fixed positions, maintaining a definite shape and volume. This arrangement allows solids to maintain a rigid structure. Liquids have particles that are close together but can move past each other, giving them the ability to flow and take the shape of their container. Gases have particles that are far apart and move freely, leading to their ability to expand to fill any container. Plasma is an ionized gas where particles have high energy levels and are not packed tightly together, making it an uncommon state of matter on Earth.

2. What can stop the penetration of alpha particles?

Correct answer: C

Rationale: Alpha particles can be stopped by a piece of paper due to their low penetration power. The paper acts as a shield, effectively blocking the alpha particles from passing through. In contrast, materials like aluminum foil, glass, and plastic are not as effective as a simple piece of paper in stopping alpha particles. Aluminum foil is more effective against beta particles, gamma rays, and x-rays due to its higher density. Glass and plastic also provide some protection against beta particles and gamma rays, but they are less effective than a piece of paper against alpha particles.

3. What determines polarity in a molecule?

Correct answer: C

Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.

4. Which elements are typically involved in hydrogen bonding?

Correct answer: D

Rationale: Hydrogen bonding occurs between hydrogen and highly electronegative atoms such as fluorine, oxygen, and nitrogen. These atoms have a strong pull on the shared electrons, leading to a partial negative charge on them, which allows them to form hydrogen bonds with hydrogen or other electronegative atoms. Choice A is incorrect because carbon is not typically involved in hydrogen bonding. Choice B is incorrect because chlorine is not as electronegative as nitrogen, and choice C is incorrect because nitrogen is more electronegative than chlorine.

5. What is the process of breaking bonds and forming new bonds to create new chemical compounds?

Correct answer: B

Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.

Similar Questions

What is the primary function of enzymes?
What is atomic mass?
What is the correct formula for iron III oxide?
Balance this equation: Fe + Cl2 → FeCl3
What is the pH of acids?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses