how does increasing the concentration of reactants affect a chemical reaction
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Quizlet

1. How does increasing the concentration of reactants affect a chemical reaction?

Correct answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

2. What are the three types of radiation?

Correct answer: A

Rationale: The correct answer is Alpha, beta, gamma. Alpha radiation consists of helium nuclei, beta radiation comprises electrons or positrons, and gamma radiation is high-energy electromagnetic radiation. Choice B, delta, is incorrect as delta is not a type of radiation. Choice C, gamma, delta, epsilon, and Choice D, beta, gamma, epsilon, are incorrect as they do not include the three standard types of radiation.

3. What type of bond is an electrostatic attraction between two oppositely charged ions?

Correct answer: C

Rationale: An ionic bond forms when one atom transfers electrons to another, resulting in the formation of positively and negatively charged ions. The attraction between these oppositely charged ions creates an electrostatic bond, known as an ionic bond. Choice A, covalent bonds, involve the sharing of electrons, not the transfer. Choice B, metallic bonds, occur between metal atoms and involve a 'sea of electrons' that are delocalized. Choice D, hydrogen bonds, are much weaker interactions between hydrogen atoms and other electronegative atoms like oxygen or nitrogen.

4. Which of these types of intermolecular force is the strongest?

Correct answer: D

Rationale: Hydrogen bonding is the strongest type of intermolecular force among the options provided. It occurs when a hydrogen atom is covalently bonded to a highly electronegative atom (such as nitrogen, oxygen, or fluorine) and forms a strong electrostatic attraction with an unshared pair of electrons on another electronegative atom. This type of bond is stronger than dipole-dipole interactions, London dispersion forces, and Keesom interactions due to the significant electronegativity difference between the hydrogen and the electronegative atom involved in the bond. The presence of hydrogen bonding contributes to unique properties in substances, such as high boiling and melting points, making it a crucial force in various biological and chemical processes.

5. Which element is considered a noble gas?

Correct answer: B

Rationale: The correct answer is 'Neon.' Noble gases are a group of elements with very low reactivity. Neon is one of these elements, known for its stable and unreactive nature. Oxygen, hydrogen, and argon do not belong to the noble gas group. Oxygen is a reactive non-metal, hydrogen is a non-metal and the first element in the periodic table, and argon is a noble gas like neon but not the correct answer in this case.

Similar Questions

What are mixtures of 2 or more metals called?
To the nearest whole number, what is the mass of one mole of hydrogen chloride?
How many electrons are in a neutral atom of neon?
What is the name of the device that separates gaseous ions by their mass-to-charge ratio?
What is the molarity of a solution containing 45 moles of NaCl in 4 liters?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses