HESI A2
Chemistry HESI A2 Quizlet
1. How does increasing the concentration of reactants affect a chemical reaction?
- A. Decreases the reaction rate
- B. Increases the reaction rate
- C. Stops the reaction
- D. Has no effect
Correct answer: B
Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.
2. What is the oxidation state of the potassium ion in the compound KCl?
- A. +1
- B. -1
- C. +2
- D. -2
Correct answer: A
Rationale: In the compound KCl (potassium chloride), potassium is in Group 1 of the periodic table, which means it has a valence electron of 1. Chlorine is in Group 17 and gains one electron to achieve a stable electron configuration by forming an ionic bond with potassium. As a result, the potassium ion in KCl has a +1 oxidation state. Therefore, the correct answer is +1. Choices B, C, and D are incorrect as they do not reflect the oxidation state of the potassium ion in KCl.
3. If oxygen is in a compound, what would its oxidation number be?
- A. 2
- B. -2
- C. 0
- D. -1
Correct answer: B
Rationale: Oxygen typically has an oxidation number of -2 in compounds because it tends to gain electrons. This is due to its high electronegativity, which leads to oxygen attracting electrons towards itself in a chemical bond. Choice A (2) is incorrect because oxygen doesn't have a +2 oxidation number in compounds. Choice C (0) is incorrect as oxygen rarely has an oxidation number of 0 in compounds. Choice D (-1) is incorrect as oxygen's oxidation number in compounds is typically -2, not -1.
4. If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?
- A. 1.0 M
- B. 2.0 M
- C. 11.7 M
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: Molarity is defined as the number of moles of solute per liter of solution. In this case, 5 g of NaCl represents 1 mole of NaCl. Given that this 1 mole is dissolved in 500 L of solution, the molarity of the solution can be calculated as follows: Molarity = moles of solute / liters of solution = 1 mole / 500 L = 0.002 M. However, the molarity is usually expressed in moles per liter, so to convert to M, you divide by 0.085 L (which is 500 L in liters) to get 11.7 M. Choice A is incorrect because the molarity is not 1.0 M. Choice B is incorrect because the molarity is not 2.0 M. Choice D is incorrect because the molarity can be determined from the information provided.
5. Which gas is produced when an acid reacts with a carbonate?
- A. Carbon dioxide
- B. Oxygen
- C. Hydrogen
- D. Nitrogen
Correct answer: A
Rationale: When an acid reacts with a carbonate, the chemical reaction typically yields carbon dioxide gas. Carbon dioxide is formed due to the chemical reaction between the acid and the carbonate, releasing this gas as a product. Therefore, the correct answer is 'Carbon dioxide.' Choices B, C, and D are incorrect as oxygen, hydrogen, and nitrogen are not the gases produced in this specific acid-carbonate reaction.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access