HESI A2
Chemistry HESI A2 Practice Test
1. Which classification best describes B, Si, As, Te, At, Ge, and Sb that form a staircase pattern on the right side of the periodic table?
- A. Metals
- B. Semimetals
- C. Nonmetals
- D. Ultrametals
Correct answer: B
Rationale: B, Si, As, Te, At, Ge, and Sb are located in a staircase pattern on the periodic table's right side. Elements in this region are known as metalloids or semimetals because they exhibit properties of both metals and nonmetals. They possess characteristics of both metallic and non-metallic elements, making them valuable semiconductors with diverse applications in electronics. Choice A is incorrect because these elements are not considered true metals. Choice C is incorrect as these elements do not display typical nonmetal properties exclusively. Choice D, 'Ultrametals,' is not a recognized classification in chemistry and is therefore incorrect.
2. What is the primary function of enzymes?
- A. To provide energy for reactions
- B. To speed up reactions
- C. To decrease activation energy
- D. To act as a catalyst
Correct answer: B
Rationale: Enzymes function to speed up reactions by lowering the activation energy required for the reaction to occur. They act as biological catalysts, providing an alternative pathway for the reaction to proceed more rapidly without being consumed in the process. Choices A, C, and D are incorrect because enzymes do not provide energy for reactions (they do not generate energy), their primary function is not to decrease activation energy (though they do lower it), and while they act as catalysts, the primary function is to speed up reactions by lowering activation energy.
3. What is atomic mass?
- A. Number of protons in an atom
- B. Sum of protons and neutrons
- C. Number of neutrons in an atom
- D. Average weight of an element
Correct answer: B
Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.
4. The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?
- A. 0.28M
- B. 1.8M
- C. 2.8M
- D. 18M
Correct answer: C
Rationale: To calculate the molarity of the solution, we first need to determine the moles of solute (glucose) and solvent (water) separately. The molar mass of glucose is 180 g/mol. First, calculate the moles of glucose: 5 g / 180 g/mol = 0.02778 mol of glucose. Next, calculate the moles of water: 100 g / 18 g/mol = 5.56 mol of water. Now, calculate the total moles in the solution: 0.02778 mol glucose + 5.56 mol water = 5.5878 mol. Finally, calculate the molarity: Molarity = moles of solute / liters of solution. Since the total mass of the solution is 100 g + 5 g = 105 g = 0.105 kg, which is equal to 0.105 L, the molarity is 5.5878 mol / 0.105 L = 53.22 M, which rounds to 2.8M. Therefore, the correct answer is 2.8M. Choices A, B, and D are incorrect because they do not reflect the accurate molarity calculation based on the moles of solute and volume of the solution.
5. What is the correct formula for calcium carbonate?
- A. CaSO₃
- B. CaCO₃
- C. Ca(OH)₂
- D. CH₃OH
Correct answer: B
Rationale: The correct formula for calcium carbonate is CaCO₃, which consists of one calcium (Ca) atom, one carbon (C) atom, and three oxygen (O) atoms. Therefore, choice B, CaCO₃, is the accurate formula for calcium carbonate. Choices A, C, and D do not represent the correct formula for calcium carbonate. Choice A, CaSO₃, is calcium sulfite, not calcium carbonate. Choice C, Ca(OH)₂, is calcium hydroxide, and choice D, CH₃OH, is methanol, none of which are correct formulas for calcium carbonate.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access