which of these can you conclude from ohms law
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. Which conclusion can be drawn from Ohm’s law?

Correct answer: B

Rationale: Ohm's law states that the ratio of the potential difference (voltage) between the ends of a conductor to the current flowing through it is a constant. Mathematically, this is represented as V = I x R, where V is voltage, I is current, and R is the constant resistance. Therefore, the correct conclusion that can be drawn from Ohm's law is that the ratio of the potential difference between the ends of a conductor to current is a constant, denoted as R. This relationship is fundamental to understanding the behavior of electrical circuits and the effect of resistance on voltage and current. Choice A is incorrect because Ohm's law actually states that voltage and current are directly proportional when resistance is constant. Choice C is incorrect because voltage is not the amount of charge that passes through a point per second; rather, it is the electric potential energy per unit charge. Choice D is incorrect because although power (P) can be calculated by multiplying current (I) by voltage (V), this is not a conclusion directly drawn from Ohm's law.

2. A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?

Correct answer: B

Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.

3. A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?

Correct answer: C

Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration × time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² × 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.

4. If a force of 12 kg stretches a spring by 3 cm, how far will the spring stretch when a force of 30 kg is applied?

Correct answer: B

Rationale: The extension of a spring is directly proportional to the force applied. In this case, the force increases from 12 kg to 30 kg, which is a 2.5 times increase. Therefore, the extension of the spring will also increase by 2.5 times. Given that the spring stretches 3 cm with a force of 12 kg, multiplying 3 cm by 2.5 gives us the extension of the spring when a force of 30 kg is applied, which equals 7.5 cm. Therefore, the correct answer is 7.5 cm. Choice A, 6 cm, is incorrect because it does not account for the proportional increase in force. Choice C, 9 cm, and Choice D, 10.5 cm, are incorrect as they overestimate the extension of the spring by not considering the direct proportionality between force and extension.

5. A 5-kg block is suspended from a spring, causing the spring to stretch 10 cm from equilibrium. What is the spring constant for this spring?

Correct answer: C

Rationale: The spring constant (k) can be calculated using Hooke's Law formula: F = -kx, where F is the force applied, k is the spring constant, and x is the displacement from equilibrium. In this case, the force applied is equal to the weight of the block, F = mg, where m = mass of the block = 5 kg and g = acceleration due to gravity = 9.8 m/s^2. The displacement x = 10 cm = 0.1 m. Substituting the values, we have: 5 kg * 9.8 m/s^2 = k * 0.1 m. Solving for k gives k = 5 * 9.8 / 0.1 = 49 N/m. Therefore, the spring constant for this spring is 49 N/cm. Choice A (4.9 N/cm) is incorrect because it is one decimal place lower than the correct answer. Choice B (9.8 N/cm) is incorrect as it does not account for the correct calculation based on the given information. Choice D (50 N/cm) is incorrect because it is slightly higher than the accurate value obtained through the calculations.

Similar Questions

A caterpillar starts moving at a rate of 14 in/hr. After 15 minutes, it is moving at a rate of 20 in/hr. What is the caterpillar’s rate of acceleration?
The first law of thermodynamics is a principle of energy conservation. It states that:
Jon walks all the way around a rectangular park that is 1 km × 2 km. Which statement is true about Jon’s walk?
Archimedes' principle explains the ability to control buoyancy, allowing:
What force was applied to the object that was moved if 100 N⋅m of work is done over 20 m?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses