HESI A2
HESI A2 Physics
1. When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through which process?
- A. Radiation
- B. Conduction
- C. Convection within the coffee
- D. A combination of conduction and convection
Correct answer: B
Rationale: When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through conduction. Conduction is the process of heat transfer through direct contact between objects at different temperatures. In this scenario, the heat from the hot coffee cup is transferred to the cold table through direct contact, making conduction the primary mode of heat transfer. Choice A (Radiation) is incorrect because radiation is the transfer of heat through electromagnetic waves, which is not the primary mode of heat transfer in this scenario. Choice C (Convection within the coffee) is incorrect because convection is the transfer of heat through the movement of fluids, which is not the primary mode of heat transfer in this scenario. Choice D (A combination of conduction and convection) is incorrect because while convection may play a minor role due to air currents around the cup, the primary mode of heat transfer in this scenario is conduction.
2. During adiabatic compression of a gas, what happens to its temperature?
- A. Remains constant
- B. Decreases
- C. Increases
- D. Becomes unpredictable without additional information
Correct answer: C
Rationale: During adiabatic compression, the gas's temperature increases. This is because no heat is exchanged with the surroundings, and all the work done on the gas results in an increase in internal energy. Choice A is incorrect because the temperature does not remain constant during adiabatic compression. Choice B is incorrect as the temperature does not decrease. Choice D is incorrect as the behavior of the gas's temperature during adiabatic compression is predictable based on the principles of thermodynamics.
3. What is the SI unit for quantifying the transfer of energy due to an applied force?
- A. Newton (N)
- B. Meter per second (m/s)
- C. Joule (J)
- D. Kilogram (kg)
Correct answer: C
Rationale: The correct answer is C: Joule (J). The joule is the SI unit used to quantify the transfer of energy due to an applied force. It is defined as the work done when a force of one newton is applied over a distance of one meter. Newton (N) is the unit of force, not energy transfer. Meter per second (m/s) is the unit of speed, not energy transfer. Kilogram (kg) is the unit of mass, not energy transfer. Therefore, the correct unit for quantifying the transfer of energy due to an applied force is the joule (J).
4. In a U-tube manometer, a fluid is used to measure pressure differences. When one side is connected to a pressurized system, the fluid level on that side will:
- A. Remain the same
- B. Decrease
- C. Increase
- D. Depend on the type of fluid used
Correct answer: B
Rationale: In a U-tube manometer, the side connected to a pressurized system will experience a decrease in fluid level due to the pressure exerted by the system. This pressure forces the fluid down, causing the fluid level to decrease. Therefore, choice B is correct. Choices A and C are incorrect because the fluid level will not remain the same or increase when connected to a pressurized system. Choice D is incorrect as the type of fluid used does not determine the direction of the fluid movement in response to pressure.
5. Why doesn’t a raindrop accelerate as it approaches the ground?
- A. Gravity pulls it down at a constant rate.
- B. Air resistance counteracts the gravitational force.
- C. Its mass decreases, decreasing its speed.
- D. Objects in motion decelerate over distance.
Correct answer: B
Rationale: The correct answer is B. As a raindrop falls, it experiences air resistance which counteracts the gravitational force pulling it down. This balancing of forces prevents the raindrop from accelerating further as it approaches the ground. Choice A is incorrect because while gravity is pulling the raindrop down, air resistance opposes this force. Choice C is incorrect as the mass of the raindrop remains constant during its fall. Choice D is incorrect because objects in motion may decelerate due to various factors, but in this case, the focus is on why the raindrop doesn't accelerate.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access