when the heat of a reaction is negative which statement is true
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. When the heat of a reaction is negative, which statement is true?

Correct answer: C

Rationale: When the heat of a reaction is negative, it indicates that the reaction releases energy in the form of heat. This means that the products have lower energy levels compared to the reactants. Lower energy levels are associated with greater stability in chemical systems. Therefore, when the heat of a reaction is negative, the products are more stable due to having less energy than the reactants. Choice A, stating that the products have less energy and are less stable, is incorrect as lower energy levels imply greater stability. Choice B, stating that the products have more energy and are more stable, is incorrect as lower energy levels lead to higher stability. Choice D, stating that the products have more energy and are less stable, is incorrect as lower energy levels are associated with higher stability.

2. The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:

Correct answer: A

Rationale: The correct equation relating heat transfer (Q), mass (m), specific heat capacity (c), and change in temperature (ΔT) is Q = mcΔT. This equation states that the heat transfer is equal to the product of the mass, specific heat capacity, and temperature change. Therefore, the correct answer is B, as it correctly represents this relationship. Choices C and D do not correctly represent the relationship between these quantities and are therefore incorrect.

3. Which of the following statements is true about a refrigerator?

Correct answer: A

Rationale: A refrigerator operates on a Carnot cycle by transferring heat from a cold reservoir to a hot reservoir. Choice A is correct because a refrigerator removes heat from a cold reservoir at a lower temperature. Choice B is incorrect as a refrigerator does not violate the first law of thermodynamics but rather requires work input to transfer heat. Choice C is incorrect as a refrigerator does not increase the total entropy of the universe. Choice D is incorrect because a refrigerator does not operate isothermally at both the hot and cold reservoirs.

4. A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?

Correct answer: C

Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.

5. Two objects attract each other with a gravitational force of 12 units. If you double the distance between the objects, what is the new force of attraction between the two?

Correct answer: A

Rationale: The gravitational force between two objects is inversely proportional to the square of the distance between them. If the distance is doubled, the force will be reduced to 1/4 of the original force. Therefore, the new force of attraction between the two objects will be 12 units / 4 = 3 units. Choice A is correct because doubling the distance reduces the force to 1/4 of the original value. Choices B, C, and D are incorrect as they do not consider the inverse square relationship between distance and gravitational force.

Similar Questions

If a 5-kg ball is moving at 5 m/s, what is its momentum?
When a car is driven for a long time, the pressure of air in the tires increases. This is best explained by which of the following gas laws?
According to the Clausius inequality, for a cyclic process involving heat transfer between a system and its surroundings at a single constant temperature (T), the following inequality must hold true:
Jon walks all the way around a rectangular park that is 1 km × 2 km. Which statement is true about Jon’s walk?
What is the kinetic energy of a 500-kg wagon moving at 10 m/s?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses