when a charged particle moves through a vacuum at a constant speed it generates
Logo

Nursing Elites

HESI A2

HESI Exams Quizlet Physics

1. When a charged particle moves through a vacuum at a constant speed, it generates:

Correct answer: C

Rationale: A moving charged particle generates both an electric field and a magnetic field. The electric field is due to the charge itself, and the magnetic field is produced by the motion of the charge. Choice A is incorrect because a moving charged particle also generates a magnetic field. Choice B is incorrect because a moving charged particle generates both electric and magnetic fields. Choice D is incorrect as a moving charged particle generates fields due to its charge and motion.

2. A 5-kg block is suspended from a spring, causing the spring to stretch 10 cm from equilibrium. What is the spring constant for this spring?

Correct answer: C

Rationale: The spring constant (k) can be calculated using Hooke's Law formula: F = -kx, where F is the force applied, k is the spring constant, and x is the displacement from equilibrium. In this case, the force applied is equal to the weight of the block, F = mg, where m = mass of the block = 5 kg and g = acceleration due to gravity = 9.8 m/s^2. The displacement x = 10 cm = 0.1 m. Substituting the values, we have: 5 kg * 9.8 m/s^2 = k * 0.1 m. Solving for k gives k = 5 * 9.8 / 0.1 = 49 N/m. Therefore, the spring constant for this spring is 49 N/cm. Choice A (4.9 N/cm) is incorrect because it is one decimal place lower than the correct answer. Choice B (9.8 N/cm) is incorrect as it does not account for the correct calculation based on the given information. Choice D (50 N/cm) is incorrect because it is slightly higher than the accurate value obtained through the calculations.

3. When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through which process?

Correct answer: B

Rationale: When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through conduction. Conduction is the process of heat transfer through direct contact between objects at different temperatures. In this scenario, the heat from the hot coffee cup is transferred to the cold table through direct contact, making conduction the primary mode of heat transfer. Choice A (Radiation) is incorrect because radiation is the transfer of heat through electromagnetic waves, which is not the primary mode of heat transfer in this scenario. Choice C (Convection within the coffee) is incorrect because convection is the transfer of heat through the movement of fluids, which is not the primary mode of heat transfer in this scenario. Choice D (A combination of conduction and convection) is incorrect because while convection may play a minor role due to air currents around the cup, the primary mode of heat transfer in this scenario is conduction.

4. The speed of sound in dry air at 20°C is 343 m/s. If the wavelength of a sound wave is 5 m, what is its frequency?

Correct answer: C

Rationale: The speed of sound (v) can be calculated using the formula: v = f × λ, where f is the frequency and λ is the wavelength. Given that the speed of sound is 343 m/s and the wavelength is 5 m, we can rearrange the formula to solve for frequency: f = v / λ = 343 / 5 = 68.6 Hz. Therefore, the correct frequency is 68.6 Hz. Choices A, B, and D are incorrect as they do not result from the correct calculation based on the given values.

5. In an adiabatic process, there is:

Correct answer: A

Rationale: In an adiabatic process, choice A is correct because adiabatic processes involve no heat transfer between the system and its surroundings (Q = 0). This lack of heat transfer is a defining characteristic of adiabatic processes. Choices B, C, and D do not accurately describe an adiabatic process. Choice B refers to an isothermal process where temperature remains constant, not adiabatic. Choice C describes an isobaric process with constant pressure, not specific to adiabatic processes. Choice D mentions the conservation of energy but does not directly relate to the absence of heat transfer in adiabatic processes.

Similar Questions

A caterpillar starts moving at a rate of 14 in/hr. After 15 minutes, it is moving at a rate of 20 in/hr. What is the caterpillar’s rate of acceleration?
Capillarity describes the tendency of fluids to rise or fall in narrow tubes. This phenomenon arises from the interplay of:
The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
As the frequency of a sound wave increases, what else is true?
What is the electric field inside a hollow conductor with a net charge?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses