a spring has a spring constant of 20 nm how much force is needed to compress the spring from 40 cm to 30 cm
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. A spring has a spring constant of 20 N/m. How much force is needed to compress the spring from 40 cm to 30 cm?

Correct answer: D

Rationale: The change in length of the spring is 40 cm - 30 cm = 10 cm = 0.10 m. The force required to compress or stretch a spring is given by Hooke's Law: F = k × x, where F is the force, k is the spring constant (20 N/m in this case), and x is the change in length (0.10 m). Substituting the values into the formula: F = 20 N/m × 0.10 m = 2 N. Therefore, the correct answer is 2 N. Choice A (200 N) is incorrect because it miscalculates the force. Choice B (80 N) is incorrect as it does not apply Hooke's Law correctly. Choice C (5 N) is incorrect as it underestimates the force required.

2. When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through which process?

Correct answer: B

Rationale: When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through conduction. Conduction is the process of heat transfer through direct contact between objects at different temperatures. In this scenario, the heat from the hot coffee cup is transferred to the cold table through direct contact, making conduction the primary mode of heat transfer. Choice A (Radiation) is incorrect because radiation is the transfer of heat through electromagnetic waves, which is not the primary mode of heat transfer in this scenario. Choice C (Convection within the coffee) is incorrect because convection is the transfer of heat through the movement of fluids, which is not the primary mode of heat transfer in this scenario. Choice D (A combination of conduction and convection) is incorrect because while convection may play a minor role due to air currents around the cup, the primary mode of heat transfer in this scenario is conduction.

3. Electric motors convert electrical energy primarily into:

Correct answer: C

Rationale: Electric motors convert electrical energy into mechanical energy. When electricity passes through the coils in the motor, it creates a magnetic field that interacts with the field from the permanent magnets, resulting in a force that drives motion. Choice A, 'Thermal energy,' is incorrect as electric motors are designed to minimize heat production. Choice B, 'Light,' is incorrect as electric motors do not produce light as a primary output. Choice D, 'Sound waves,' is incorrect as the primary output of an electric motor is mechanical motion, not sound waves.

4. A bicycle and a car are both traveling at a rate of 5 m/s. Which statement is true?

Correct answer: B

Rationale: Kinetic energy is determined by both the mass and the velocity of an object. While both the bicycle and the car are moving at the same velocity (5 m/s), the car has significantly more mass than the bicycle. As a result, the car has more kinetic energy than the bicycle, even though their speeds are identical. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not consider the influence of mass on kinetic energy. Choice A is incorrect as the car has more kinetic energy due to its greater mass. Choice C is incorrect because the vehicles have different masses. Choice D is incorrect as both the bicycle and the car possess kinetic energy.

5. A Carnot cycle is a theoretical ideal heat engine operating between two heat reservoirs at different temperatures. Which of the following statements is NOT true about a Carnot cycle?

Correct answer: C

Rationale: The statement that is NOT true is C. Although part of the Carnot cycle operates isothermally, not the entire cycle operates isothermally. The Carnot cycle consists of both isothermal and adiabatic processes. Choice A is incorrect because the efficiency of a Carnot cycle is indeed solely dependent on the absolute temperatures of the hot and cold reservoirs. Choice B is correct as a Carnot cycle is reversible, allowing the process to be run in both directions with the same efficiency. Choice D is also true as the Carnot cycle is the most efficient heat engine operating between the same two reservoir temperatures. Therefore, the correct answer is C.

Similar Questions

According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to what factor?
In an adiabatic process, there is:
An object has a constant velocity of 50 m/s and travels for 10 s. What is the acceleration of the object?
When a fluid encounters a bluff body (e.g., a car), the flow can separate behind the object, creating a region of low pressure. This phenomenon is known as:
How do you determine the velocity of a wave?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses