HESI A2
HESI A2 Physics Practice Test
1. What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
- A. 50 J
- B. 250 J
- C. 2.5 × 10^4 J
- D. 5.0 × 10^5 J
Correct answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 × mass × velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 × 500 kg × (10 m/s)² = 0.5 × 500 kg × 100 m²/s² = 25,000 J or 2.5 × 10⁴ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 × 10⁴ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 × 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 × 10^4 J).
2. A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 15 cm. About what is the image height of the candle in the mirror?
- A. 30.5 cm
- B. 15.625 cm
- C. −15 cm
- D. −30.5 cm
Correct answer: B
Rationale: The magnification formula for a mirror is given by M = -f / (f - d), where f is the focal length of the mirror, and d is the object distance from the mirror. Using the mirror equation and magnification formula, the image height is found to be negative because it is inverted. Plugging in the values (f = 15 cm, d = 20 cm) into the formula gives M = -15 / (15 - 20) = -15 / -5 = 3. The negative sign indicates that the image is inverted. The image height is then calculated by multiplying the magnification by the object height: 3 * 5 cm = 15 cm. Therefore, the correct image height is approximately -15 cm. Choice A (30.5 cm) and Choice D (-30.5 cm) are incorrect as they do not consider the inversion of the image. Choice C (-15 cm) is also incorrect because it neglects the negative sign, which indicates the inversion of the image.
3. An object moves 100 m in 10 s. What is the velocity of the object over this time?
- A. 10 m/s
- B. 90 m/s
- C. 110 m/s
- D. 1,000 m/s
Correct answer: A
Rationale: Velocity is calculated as the displacement divided by the time taken to cover that displacement. In this case, the object moves 100 meters in 10 seconds. Therefore, the velocity is 100 m / 10 s = 10 m/s. Choice B, 90 m/s, is incorrect as it doesn't match the calculated velocity. Choice C, 110 m/s, is incorrect as it is higher than the calculated velocity. Choice D, 1,000 m/s, is incorrect as it is significantly higher than the calculated velocity.
4. The first law of thermodynamics is a principle of energy conservation. It states that:
- A. Energy can be created or destroyed.
- B. The total entropy of an isolated system always decreases.
- C. Energy can neither be created nor destroyed, only transferred or transformed.
- D. The temperature of a system is directly proportional to its entropy.
Correct answer: C
Rationale: The first law of thermodynamics states that energy cannot be created or destroyed; it can only be transferred or converted from one form to another, ensuring energy conservation in any system. Choice A is incorrect because it goes against the principle of energy conservation. Choice B is incorrect as it refers to the second law of thermodynamics, which states that the total entropy of an isolated system always increases. Choice D is incorrect because the temperature of a system is not directly proportional to its entropy.
5. When a junked car is compacted, which statement is true?
- A. Its mass increases.
- B. Its mass decreases.
- C. Its density increases.
- D. Its density decreases.
Correct answer: C
Rationale: When a junked car is compacted, its volume decreases while its mass remains the same. As a result, the car's density increases because density is mass divided by volume. Choice A is incorrect because the mass of the car remains the same. Choice B is incorrect because the mass does not decrease. Choice D is incorrect because the density increases as the volume decreases, not decreases.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access