a caterpillar starts moving at a rate of 14 inhr after 15 minutes it is moving at a rate of 20 inhr what is the caterpillars rate of acceleration
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. A caterpillar starts moving at a rate of 14 in/hr. After 15 minutes, it is moving at a rate of 20 in/hr. What is the caterpillar’s rate of acceleration?

Correct answer: C

Rationale: Acceleration is the change in velocity over time. The change in velocity for the caterpillar is 20 in/hr - 14 in/hr = 6 in/hr. Since this change occurred over 15 minutes (or 0.25 hours), the acceleration can be calculated as (6 in/hr) / (0.25 hr) = 24 in/hr². Therefore, the caterpillar's rate of acceleration is 24 in/hr², which corresponds to choice C. Choice A, 6 in/hr², is incorrect as it does not account for the time factor and the correct calculation. Choice B, 12 in/hr², is incorrect as it doubles the correct acceleration value. Choice D, 280 in/hr², is significantly higher than the correct value, indicating a calculation error.

2. Psychrometrics is a branch of thermodynamics that deals with the properties of:

Correct answer: C

Rationale: Psychrometrics is the study of the physical and thermodynamic properties of gas-vapor mixtures, especially mixtures of moist air and water vapor. This branch of thermodynamics focuses on the relationships between temperature, pressure, humidity, and other properties of these mixtures. Choice A, ideal gases, is incorrect because psychrometrics specifically deals with gas-vapor mixtures, not ideal gases. Choice B, magnetic materials, and Choice D, nuclear reactions, are unrelated to psychrometrics and thermodynamics, making them incorrect. Understanding psychrometrics is crucial in fields like heating, ventilation, air conditioning, and refrigeration (HVAC&R) to design systems that effectively control air quality, comfort, and temperature.

3. If the force acting on an object is doubled, how does its acceleration change?

Correct answer: C

Rationale: According to Newton's second law of motion, the acceleration of an object is directly proportional to the force acting on it. Therefore, if the force acting on an object is doubled, its acceleration will also double. This relationship is expressed by the equation F = ma, where F is the force, m is the mass of the object, and a is the acceleration. When the force (F) is doubled, the acceleration (a) will also double, assuming the mass remains constant. Choice A is incorrect because acceleration changes with a change in force. Choice B is incorrect because acceleration and force are directly proportional. Choice D is incorrect because increasing the force acting on an object does not eliminate its acceleration; instead, it results in an increase in acceleration, as per Newton's second law.

4. As the frequency of a sound wave increases, what else is true?

Correct answer: A

Rationale: The correct answer is A: 'Its wavelength decreases.' The frequency and wavelength of a sound wave are inversely proportional. As the frequency of a sound wave increases (more oscillations per second), its wavelength decreases. This relationship is described by the formula: Speed of Sound = Frequency x Wavelength. Therefore, to maintain the speed of sound constant, when the frequency increases, the wavelength must decrease. Choices B, C, and D are incorrect because an increase in frequency does not lead to an increase in wavelength or changes in amplitude.

5. The first law of thermodynamics is a principle of energy conservation. It states that:

Correct answer: C

Rationale: The first law of thermodynamics states that energy cannot be created or destroyed; it can only be transferred or converted from one form to another, ensuring energy conservation in any system. Choice A is incorrect because it goes against the principle of energy conservation. Choice B is incorrect as it refers to the second law of thermodynamics, which states that the total entropy of an isolated system always increases. Choice D is incorrect because the temperature of a system is not directly proportional to its entropy.

Similar Questions

A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?
A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?
Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
In hydraulic systems, Pascal's principle states that a pressure change applied to a confined incompressible fluid is:
A rock has a volume of 6 cm3 and a mass of 24 g. What is its density?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses