a caterpillar starts moving at a rate of 14 inhr after 15 minutes it is moving at a rate of 20 inhr what is the caterpillars rate of acceleration
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. A caterpillar starts moving at a rate of 14 in/hr. After 15 minutes, it is moving at a rate of 20 in/hr. What is the caterpillar’s rate of acceleration?

Correct answer: C

Rationale: Acceleration is the change in velocity over time. The change in velocity for the caterpillar is 20 in/hr - 14 in/hr = 6 in/hr. Since this change occurred over 15 minutes (or 0.25 hours), the acceleration can be calculated as (6 in/hr) / (0.25 hr) = 24 in/hr². Therefore, the caterpillar's rate of acceleration is 24 in/hr², which corresponds to choice C. Choice A, 6 in/hr², is incorrect as it does not account for the time factor and the correct calculation. Choice B, 12 in/hr², is incorrect as it doubles the correct acceleration value. Choice D, 280 in/hr², is significantly higher than the correct value, indicating a calculation error.

2. An airplane travels 500 miles northeast and then, on the return trip, travels 500 miles southwest. Which of the following is true?

Correct answer: D

Rationale: The displacement of an object is the change in position from the starting point to the ending point, regardless of the path taken. In this case, the airplane returns to its original position after traveling 500 miles northeast and then 500 miles southwest. Therefore, the displacement is 0 miles. However, the distance traveled is the total path covered, which is 500 miles northeast plus 500 miles southwest, for a total of 1,000 miles. Choice A is incorrect because the displacement is not the sum of the distances traveled. Choice B is incorrect as it incorrectly states that both the displacement and the distance traveled are 1,000 miles. Choice C is incorrect as it states that both the displacement and the distance traveled are 0 miles, which is not the case.

3. At which point on a roller coaster does the car have the greatest potential energy?

Correct answer: B

Rationale: The correct answer is B, the highest peak. At the highest peak of the roller coaster, the car reaches its maximum height above the ground. This point represents the car's greatest potential energy because it has the highest potential to do work due to its elevated position. The potential energy is directly proportional to the height of an object, so the highest point on the roller coaster track corresponds to the car's greatest potential energy. Choices A, C, and D are incorrect because potential energy is highest at the peak due to its elevated position, not at the start of the ride, the lowest trough, or the end of the ride.

4. If a 5-kg ball is moving at 5 m/s, what is its momentum?

Correct answer: D

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the mass of the ball is 5 kg and its velocity is 5 m/s. Therefore, the momentum of the ball is 5 kg × 5 m/s = 25 kg⋅m/s. Choice A (10 kg⋅m/s) is incorrect as it does not account for both mass and velocity. Choice B (16.2 km/h) is incorrect as it provides a speed in a different unit without considering mass. Choice C (24.75 kg⋅m/s) is incorrect as it does not correctly calculate the momentum based on the given mass and velocity.

5. The operating principle of a metal detector relies on:

Correct answer: B

Rationale: The correct answer is B. Metal detectors work based on the principle of electromotive force induced by a changing magnetic field. When a metal object comes into contact with the detector's magnetic field, it disrupts the field, inducing a current in the metal that can be detected. This principle allows metal detectors to identify the presence of metallic objects without relying on the static presence of a permanent magnet, the high electrical conductivity of metals, or the thermal signature of the objects. Choice A is incorrect because metal detectors do not rely on a static magnet but on the interaction of metals with a changing magnetic field. Choice C is incorrect because while metals do have high electrical conductivity, this is not the principle underlying metal detectors. Choice D is incorrect because metal detectors do not operate based on the thermal signature of objects, but rather on their interaction with magnetic fields.

Similar Questions

When a junked car is compacted, which statement is true?
A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?
As a car is traveling on the highway, its speed drops from 60 mph to 30 mph. What happens to its kinetic energy?
Which of the following is NOT a mode of heat transfer between a system and its surroundings?
The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses