HESI A2
HESI A2 Physics Quizlet
1. A caterpillar starts moving at a rate of 14 in/hr. After 15 minutes, it is moving at a rate of 20 in/hr. What is the caterpillar’s rate of acceleration?
- A. 6 in/hr²
- B. 12 in/hr²
- C. 24 in/hr²
- D. 280 in/hr²
Correct answer: C
Rationale: Acceleration is the change in velocity over time. The change in velocity for the caterpillar is 20 in/hr - 14 in/hr = 6 in/hr. Since this change occurred over 15 minutes (or 0.25 hours), the acceleration can be calculated as (6 in/hr) / (0.25 hr) = 24 in/hr². Therefore, the caterpillar's rate of acceleration is 24 in/hr², which corresponds to choice C. Choice A, 6 in/hr², is incorrect as it does not account for the time factor and the correct calculation. Choice B, 12 in/hr², is incorrect as it doubles the correct acceleration value. Choice D, 280 in/hr², is significantly higher than the correct value, indicating a calculation error.
2. The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
- A. F_b = W, the object's weight
- B. F_b = W_d, the weight of the fluid displaced by the object
- C. F_b = ρ, the density of the fluid
- D. F_b = V, the object's volume
Correct answer: B
Rationale: The correct formula for the buoyant force experienced by an object submerged in a fluid is given by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. This is represented by the formula F_b = W_d, where W_d is the weight of the fluid displaced by the object. This force acts in the opposite direction to gravity and is responsible for objects floating or sinking in fluids. Choice A is incorrect because the buoyant force is not equal to the object's weight. Choice C is incorrect because the density of the fluid is not directly related to the buoyant force. Choice D is incorrect because the object's volume is not the determining factor for the buoyant force.
3. A spring has a spring constant of 20 N/m. How much force is needed to compress the spring from 40 cm to 30 cm?
- A. 200 N
- B. 80 N
- C. 5 N
- D. 2 N
Correct answer: D
Rationale: The change in length of the spring is 40 cm - 30 cm = 10 cm = 0.10 m. The force required to compress or stretch a spring is given by Hooke's Law: F = k × x, where F is the force, k is the spring constant (20 N/m in this case), and x is the change in length (0.10 m). Substituting the values into the formula: F = 20 N/m × 0.10 m = 2 N. Therefore, the correct answer is 2 N. Choice A (200 N) is incorrect because it miscalculates the force. Choice B (80 N) is incorrect as it does not apply Hooke's Law correctly. Choice C (5 N) is incorrect as it underestimates the force required.
4. A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?
- A. 3 cm
- B. 6 cm
- C. 12 cm
- D. 30 cm
Correct answer: B
Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.
5. Surface tension, γ, is a property of fluids arising from:
- A. Intermolecular forces between fluid molecules
- B. Gravitational attraction
- C. Viscous dissipation
- D. Pressure differentials within the fluid
Correct answer: A
Rationale: Surface tension, represented by symbol γ, is caused by the cohesive forces between molecules in a liquid. These intermolecular forces, such as Van der Waals forces, hydrogen bonding, and dipole-dipole interactions, create a 'skin' at the surface of the liquid, giving rise to the property of surface tension. Gravitational attraction, viscous dissipation, and pressure differentials within the fluid do not directly contribute to surface tension. Therefore, the correct answer is A.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access