HESI A2
HESI A2 Physics
1. During adiabatic compression of a gas, what happens to its temperature?
- A. Remains constant
- B. Decreases
- C. Increases
- D. Becomes unpredictable without additional information
Correct answer: C
Rationale: During adiabatic compression, the gas's temperature increases. This is because no heat is exchanged with the surroundings, and all the work done on the gas results in an increase in internal energy. Choice A is incorrect because the temperature does not remain constant during adiabatic compression. Choice B is incorrect as the temperature does not decrease. Choice D is incorrect as the behavior of the gas's temperature during adiabatic compression is predictable based on the principles of thermodynamics.
2. The specific heat capacity (c) of a material is the amount of heat transfer (Q) required to raise the temperature (ΔT) of a unit mass (m) of the material by one degree (typically Celsius). The relationship between these quantities is described by the equation:
- A. Q = cΔT
- B. Q = mcΔT
- C. Q = c / mΔT
- D. Q = ΔT / mc
Correct answer: A
Rationale: The correct equation relating heat transfer (Q), mass (m), specific heat capacity (c), and change in temperature (ΔT) is Q = mcΔT. This equation states that the heat transfer is equal to the product of the mass, specific heat capacity, and temperature change. Therefore, the correct answer is B, as it correctly represents this relationship. Choices C and D do not correctly represent the relationship between these quantities and are therefore incorrect.
3. Ocean waves build during a storm until there is a vertical distance from the high point to the low point of 6 meters and a horizontal distance of 9 meters between adjacent crests. The waves hit the shore every 5 seconds. What is the speed of the waves?
- A. 1.2 m/s
- B. 1.8 m/s
- C. 2.0 m/s
- D. 2.4 m/s
Correct answer: B
Rationale: To find the speed of the waves, we use the formula: speed = wavelength / period. The wavelength is the horizontal distance between adjacent crests, which is 9 meters in this case. The period is the time it takes for one wave to pass a fixed point, given as 5 seconds. Therefore, speed = 9 meters / 5 seconds = 1.8 m/s. Choice A (1.2 m/s) is incorrect because it miscalculates the speed. Choice C (2.0 m/s) and Choice D (2.4 m/s) are incorrect as they do not correctly calculate the speed using the provided data.
4. An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
- A. 0.6 N
- B. 0.18 N
- C. 180 N
- D. 9 × 10−12 N
Correct answer: B
Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k × (|q1 × q2|) / r² Where: F is the force k is Coulomb’s constant (8.99 × 10⁹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 × 10⁹) × (3 × 10⁻⁶) × (2 × 10⁻⁶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.
5. A 60-watt lightbulb is powered by a 110-volt power source. What is the current being drawn?
- A. 0.55 amperes
- B. 1.83 amperes
- C. 50 amperes
- D. 6,600 amperes
Correct answer: A
Rationale: To calculate the current being drawn, use the formula I = P / V, where I is the current, P is the power in watts, and V is the voltage. Substituting the given values, I = 60 / 110 ≈ 0.55 amperes. Therefore, the current being drawn by the 60-watt lightbulb is approximately 0.55 amperes. Choice B, 1.83 amperes, is incorrect as it does not match the calculated value. Choices C and D, 50 amperes and 6,600 amperes, are significantly higher values and do not align with the expected current draw of a 60-watt lightbulb powered by a 110-volt source.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access