during an adiabatic compression of a gas its temperature
Logo

Nursing Elites

HESI A2

HESI A2 Physics

1. During adiabatic compression of a gas, what happens to its temperature?

Correct answer: C

Rationale: During adiabatic compression, the gas's temperature increases. This is because no heat is exchanged with the surroundings, and all the work done on the gas results in an increase in internal energy. Choice A is incorrect because the temperature does not remain constant during adiabatic compression. Choice B is incorrect as the temperature does not decrease. Choice D is incorrect as the behavior of the gas's temperature during adiabatic compression is predictable based on the principles of thermodynamics.

2. How do a scalar quantity and a vector quantity differ?

Correct answer: C

Rationale: The correct answer is C. The main difference between a scalar quantity and a vector quantity lies in the presence of direction. A vector quantity has both magnitude and direction, while a scalar quantity has magnitude only, without any specified direction. Examples of scalar quantities include distance, speed, temperature, and energy, whereas examples of vector quantities include displacement, velocity, force, and acceleration. Choices A, B, and D are incorrect because they incorrectly describe the characteristics of scalar and vector quantities.

3. The frequency of an alternating current (AC) refers to the number of times it changes direction per unit time. This is measured in:

Correct answer: A

Rationale: The frequency of an alternating current (AC) is measured in Hertz (Hz), which denotes the number of times the current changes direction per unit time. Hertz is the unit for frequency, while amperes measure current, volts measure voltage, and ohms measure resistance. Therefore, the correct answer is Hertz (Hz). Choices B, C, and D are incorrect because amperes measure current intensity, volts measure voltage potential, and ohms measure resistance, not the frequency of an alternating current.

4. A 110-volt appliance draws 0 amperes. How many watts of power does it require?

Correct answer: A

Rationale: When a 110-volt appliance draws 0 amperes, it means that the power consumption is zero as well. The formula to calculate power is P = V x I, where P is power in watts, V is voltage in volts, and I is current in amperes. Since the current is 0 amperes, the power required by the appliance is also 0 watts. Therefore, the correct answer is 0 watts. Choice B, 108 watts, is incorrect because there is no current drawn. Choice C, 112 watts, and choice D, 220 watts, are incorrect as well since the appliance is not consuming any power when drawing 0 amperes.

5. What is the net force acting on the car?

Correct answer: C

Rationale: To determine the net force acting on an object, we need to consider the sum of the forces acting in the same direction and subtract the forces acting in the opposite direction. In this scenario, there is a force of 4,200 N to the right and a force of 2,700 N to the left. By subtracting the leftward force from the rightward force (4,200 N - 2,700 N), we find that the net force acting on the car is 1,500 N to the right. Therefore, choice C, 1,500 N, is the correct answer. Choice A, 450 N, is too small as it does not account for the total forces involved. Choice B, 700 N, is also incorrect as it is not the result of the correct mathematical operation on the given forces. Choice D, 6,300 N, is too large and does not align with the calculation based on the forces provided.

Similar Questions

Cavitation is a phenomenon observed in fluids when the pressure falls below its:
In physics, the relationship between acceleration and force is expressed in ___________.
When a fluid encounters a bluff body (e.g., a car), the flow can separate behind the object, creating a region of low pressure. This phenomenon is known as:
A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 15 cm. About what is the image height of the candle in the mirror?
A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses