HESI A2
Chemistry Hesi A2
1. Why does fluorine have a higher ionization energy than oxygen?
- A. Fluorine has a smaller number of neutrons.
- B. Fluorine has a larger number of neutrons.
- C. Fluorine has a smaller nuclear charge.
- D. Fluorine has a larger nuclear charge.
Correct answer: D
Rationale: Fluorine has a higher ionization energy than oxygen because fluorine has a larger nuclear charge. The greater number of protons in the nucleus of fluorine attracts its electrons more strongly, making it harder to remove an electron from a fluorine atom compared to an oxygen atom. Choice A is incorrect as the number of neutrons does not directly affect ionization energy. Choice B is also incorrect for the same reason. Choice C is incorrect because a smaller nuclear charge would result in lower ionization energy, not higher.
2. The molar mass of some gases is as follows: carbon monoxide—28.01 g/mol; helium—4.00 g/mol; nitrogen—28.01 g/mol; and oxygen—32.00 g/mol. Which would you expect to diffuse most rapidly?
- A. Carbon monoxide
- B. Helium
- C. Nitrogen
- D. Oxygen
Correct answer: B
Rationale: The rate of diffusion is inversely proportional to the molar mass of the gas. Helium has the lowest molar mass among the given gases, making it the lightest and fastest gas to diffuse. Therefore, helium would be expected to diffuse most rapidly compared to carbon monoxide, nitrogen, and oxygen. Carbon monoxide, nitrogen, and oxygen have higher molar masses than helium, so they would diffuse more slowly. Therefore, the correct answer is helium.
3. What type of radiation is high-energy electromagnetic radiation that lacks charge and mass?
- A. Beta
- B. Alpha
- C. Gamma
- D. Delta
Correct answer: C
Rationale: Gamma radiation is a form of high-energy electromagnetic radiation that does not possess charge or mass. This type of radiation is commonly used in various fields due to its penetrating ability and lack of charge or mass, making it different from alpha and beta radiation, which consist of charged particles. Therefore, the correct answer is C - Gamma. Choices A and B are incorrect as they refer to alpha and beta radiation, which are composed of charged particles. Choice D, Delta, is not a type of radiation.
4. What is the energy required to remove the outermost electron from an atom called?
- A. covalent bonding
- B. electronegativity
- C. atomic radius
- D. ionization energy
Correct answer: D
Rationale: Ionization energy is the energy needed to remove the outermost electron from an atom, resulting in the formation of a positively charged ion. The higher the ionization energy, the more difficult it is to extract an electron. Electronegativity, however, measures an atom's ability to attract shared electrons in a chemical bond. Atomic radius refers to the distance from the nucleus to the outermost electron. Covalent bonding involves sharing electron pairs between atoms to create a stable bond. Therefore, the correct answer is ionization energy as it specifically relates to the energy needed to remove an electron from an atom.
5. What type of intermolecular force is a dipole attraction?
- A. Strong
- B. Weak
- C. Medium
- D. Very strong
Correct answer: B
Rationale: A dipole attraction is considered a weak intermolecular force. It occurs between molecules with permanent dipoles, where the positive end of one molecule is attracted to the negative end of another molecule. While dipole-dipole interactions are stronger than dispersion forces, they are weaker than hydrogen bonding or ion-dipole interactions. Therefore, the correct answer is 'Weak.' Choices A, C, and D are incorrect because dipole attractions are not classified as strong, medium, or very strong intermolecular forces, but rather fall into the category of weak intermolecular forces.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access