HESI A2
HESI A2 Chemistry
1. Which compound is a Hydrogen or proton donor, corrosive to metals, causes blue litmus paper to become red, and becomes less acidic when mixed with a base?
- A. Base
- B. Acid
- C. Salt
- D. Hydroxide
Correct answer: B
Rationale: The correct answer is 'Acid.' An acid is a compound that donates protons (H+), is corrosive to metals, and turns blue litmus paper red. When an acid is mixed with a base, they react to form salts and water, resulting in a decrease in acidity. Choices A, C, and D are incorrect because bases accept protons rather than donate them, salts are the products of acid-base reactions, and hydroxides are typically bases, not acids.
2. Which of the following is not an allotrope of carbon?
- A. Diamond
- B. Graphite
- C. Fluorine
- D. Buckminsterfullerene
Correct answer: C
Rationale: The correct answer is C: Fluorine. Allotropes of carbon are different forms of the same element. Diamonds, graphite, and buckminsterfullerene are all allotropes of carbon. However, fluorine is a separate chemical element and not an allotrope of carbon. Therefore, fluorine does not belong to the group of carbon allotropes.
3. What is the boiling point of water in °C?
- A. 90°C
- B. 100°C
- C. 95°C
- D. 80°C
Correct answer: B
Rationale: The correct answer is 100°C. The boiling point of water in Celsius is 100°C, which is standard at sea level. This is the temperature at which water changes from a liquid to a gas phase under standard atmospheric pressure. Choice A (90°C), Choice C (95°C), and Choice D (80°C) are incorrect because they do not represent the standard boiling point of water at sea level.
4. What type of bond is an electrostatic attraction between two oppositely charged ions?
- A. Covalent
- B. Metallic
- C. Ionic
- D. Hydrogen
Correct answer: C
Rationale: An ionic bond forms when one atom transfers electrons to another, resulting in the formation of positively and negatively charged ions. The attraction between these oppositely charged ions creates an electrostatic bond, known as an ionic bond. Choice A, covalent bonds, involve the sharing of electrons, not the transfer. Choice B, metallic bonds, occur between metal atoms and involve a 'sea of electrons' that are delocalized. Choice D, hydrogen bonds, are much weaker interactions between hydrogen atoms and other electronegative atoms like oxygen or nitrogen.
5. Which of these types of intermolecular force is weakest?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Hydrogen bonding
- D. Ionic bonding
Correct answer: B
Rationale: The correct answer is B, London dispersion force. London dispersion forces are the weakest type of intermolecular force among the options provided. These forces arise from temporary fluctuations in electron distribution within molecules, leading to temporary dipoles. London dispersion forces are present in all molecules and are generally weaker than dipole-dipole interactions, hydrogen bonding, and ionic bonding. Dipole-dipole interactions are stronger than London dispersion forces as they involve permanent dipoles in molecules. Hydrogen bonding is stronger than both London dispersion and dipole-dipole interactions as it is a special type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms like oxygen or nitrogen. Ionic bonding is the strongest type of intermolecular force among the options, but it is not the correct answer for the weakest type of force.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access