HESI A2
HESI A2 Chemistry Questions
1. What type of bond is present in sodium chloride?
- A. Covalent
- B. Ionic
- C. Metallic
- D. Hydrogen
Correct answer: B
Rationale: Ionic bonds are found in sodium chloride. In an ionic bond, one atom donates an electron to another atom, resulting in the formation of positively and negatively charged ions that are held together by electrostatic forces of attraction. Sodium chloride is a classic example of an ionic compound, where sodium (Na) donates an electron to chlorine (Cl), forming Na+ and Cl- ions that are attracted to each other, creating a crystal lattice structure. Covalent bonds involve the sharing of electron pairs between atoms, which is not the case in sodium chloride. Metallic bonds occur in metals where electrons are delocalized and shared across a lattice, unlike the specific transfer seen in ionic bonds. Hydrogen bonds are a type of intermolecular force, not the primary bond type present in sodium chloride.
2. What is the name of the group of elements that contains chlorine, fluorine, and iodine?
- A. Alkali metals
- B. Halogens
- C. Transition metals
- D. Noble gases
Correct answer: B
Rationale: The correct answer is 'Halogens.' Halogens are a group of elements that include chlorine, fluorine, and iodine. These elements are part of Group 17 in the periodic table. They share similar properties such as high reactivity and the ability to readily form compounds. Choice A, 'Alkali metals,' is incorrect as alkali metals are found in Group 1 of the periodic table, which includes elements like lithium and sodium. Choice C, 'Transition metals,' is incorrect as transition metals are located in the middle section of the periodic table, not in Group 17. Choice D, 'Noble gases,' is incorrect as noble gases are in Group 18 and include elements like helium and neon, which are chemically inert.
3. Which of the following is a characteristic of a chemical change?
- A. Change in shape
- B. Production of gas
- C. Melting
- D. Freezing
Correct answer: B
Rationale: The production of gas is a characteristic of a chemical change. During a chemical change, new substances are formed, often with the release or absorption of energy. The production of gas is a significant indicator of a chemical change because it indicates the formation of new compounds through chemical reactions. Choices A, C, and D are not characteristics of chemical changes. Changes in shape, melting, and freezing are physical changes where the substance's identity remains the same, unlike in chemical changes where new substances with different properties are formed.
4. What is the process of breaking bonds and forming new bonds to create new chemical compounds?
- A. Physical reaction
- B. Chemical reaction
- C. Nuclear reaction
- D. Mechanical reaction
Correct answer: B
Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.
5. How many moles of potassium bromide are in 25 mL of a 4 M KBr solution?
- A. 0.035 mol
- B. 0.1 mol
- C. 0.18 mol
- D. 1.6 mol
Correct answer: B
Rationale: To find the moles of potassium bromide in 25 mL of a 4 M KBr solution, we first need to convert the volume from milliliters to liters. 25 mL is equal to 0.025 L. Then, we use the formula moles = molarity x volume in liters. Substituting the values, moles = 4 M x 0.025 L = 0.1 mol. Therefore, there are 0.1 moles of KBr in 25 mL of a 4 M solution. Choice A, 0.035 mol, is incorrect as it does not properly calculate the moles. Choice C, 0.18 mol, and choice D, 1.6 mol, are also incorrect as they are not the result of the correct calculation based on the given molarity and volume.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access