HESI A2
Chemistry Hesi A2
1. Which substance shows a decrease in solubility in water with an increase in temperature?
- A. NaCl
- B. O
- C. KI
- D. CaCl
Correct answer: C
Rationale: Potassium iodide (KI) shows a decrease in solubility in water with an increase in temperature. This is due to the dissolution of KI in water being an endothermic process. When the temperature rises, the equilibrium shifts toward the solid state, leading to a decrease in solubility. Therefore, as the temperature increases, KI becomes less soluble in water. Choice A (NaCl) and Choice D (CaCl) do not exhibit a decrease in solubility with an increase in temperature. NaCl and CaCl are generally more soluble in water at higher temperatures. Choice B (Oxygen) is a gas and not typically considered in solubility discussions involving solids or liquids dissolving in water.
2. What is the chemical symbol for sodium?
- A. N
- B. Na
- C. Cl
- D. H
Correct answer: B
Rationale: The correct chemical symbol for sodium is 'Na.' In the periodic table, sodium is represented by the symbol 'Na,' derived from its Latin name 'natrium.' The symbol 'N' represents nitrogen, not sodium. 'Cl' is the symbol for chlorine, and 'H' is the symbol for hydrogen. Therefore, 'Na' is the correct chemical symbol for sodium.
3. What is the name of the negatively charged subatomic particles?
- A. Protons
- B. Neutrons
- C. Electrons
- D. Isotopes
Correct answer: C
Rationale: The correct answer is C: Electrons. Electrons are the negatively charged subatomic particles. They are found outside the atomic nucleus and carry a negative charge. Protons are positively charged particles found in the nucleus, neutrons have no charge, and isotopes are atoms of the same element with different numbers of neutrons, not subatomic particles.
4. What are the three types of intermolecular forces?
- A. Ionic, covalent, hydrogen
- B. Hydrogen bonding, dipole interactions, dispersion forces
- C. Van der Waals, ionic, covalent
- D. Hydrogen, Van der Waals, dispersion forces
Correct answer: B
Rationale: The three types of intermolecular forces are hydrogen bonding, dipole interactions, and dispersion forces. Option A includes ionic and covalent bonds, which are intramolecular forces, not intermolecular. Option C includes van der Waals forces, which encompass dipole interactions and dispersion forces, but also includes ionic and covalent bonds. Option D is close but misses dipole interactions, which are distinct from hydrogen bonding and dispersion forces. Therefore, option B is the correct choice as it includes the three specific types of intermolecular forces.
5. Which of the following is the weakest intermolecular force?
- A. Dipole interactions
- B. Hydrogen bonding
- C. Van der Waals forces
- D. Dispersion forces
Correct answer: D
Rationale: Dispersion forces, also known as London dispersion forces, are the weakest intermolecular forces. They are temporary attractive forces that occur due to momentary shifts in electron distribution within molecules. While dipole interactions, hydrogen bonding, and Van der Waals forces are stronger intermolecular forces, dispersion forces are the weakest because they arise from short-lived fluctuations in electron density. Dipole interactions involve permanent dipoles in molecules, making them stronger than dispersion forces. Hydrogen bonding is stronger than dipole interactions and involves hydrogen atoms bonded to highly electronegative atoms. Van der Waals forces encompass dipole-dipole interactions and dispersion forces, making them stronger than dispersion forces alone.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access