HESI A2
Biology HESI A2 Practice Exam
1. What event occurs during telophase?
- A. The nuclear envelope disappears.
- B. Organelles double in number.
- C. Chromosomes separate.
- D. Two nuclei are formed.
Correct answer: D
Rationale: During telophase, the final stage of mitosis, the separated chromosomes reach opposite poles of the cell. At this stage, a new nuclear envelope forms around each set of chromosomes, creating two distinct nuclei. This marks the completion of cell division. Choices A, B, and C are incorrect because the disappearance of the nuclear envelope typically occurs during prophase, organelles do not double in number during telophase, and chromosomes separate during anaphase, not telophase.
2. During which phase of mitosis do the chromosomes align in the center of the cell?
- A. Prophase
- B. Metaphase
- C. Telophase
- D. Anaphase
Correct answer: B
Rationale: The correct answer is Metaphase. During Metaphase, the chromosomes line up along the center of the cell's equator, forming the metaphase plate. This alignment ensures that during the subsequent phase, Anaphase, the sister chromatids can separate and move towards opposite poles. Prophase is the initial phase of mitosis where chromosomes condense and the nuclear envelope breaks down. Telophase is the final phase of mitosis where two new nuclei form.
3. In an example of a male with hemophilia and a female carrier, what percentage of the offspring is predicted to be carriers only?
- A. 0%
- B. 25%
- C. 50%
- D. 100%
Correct answer: C
Rationale: In this scenario, the male offspring will inherit the X chromosome with the hemophilia gene from the mother, as males have one X chromosome inherited from their mother. The female offspring will inherit one normal X chromosome from the father and one X chromosome with the hemophilia gene from the mother, making them carriers of the hemophilia trait. Therefore, 50% of the offspring will be carriers only. Option A (0%) is incorrect as female offspring will inherit the X chromosome with the hemophilia gene from the mother. Option B (25%) is incorrect as the female offspring will not be unaffected. Option D (100%) is incorrect as not all offspring will be carriers, only the female offspring.
4. Which of the following molecules is an important component of the plasma membrane?
- A. Phospholipids
- B. Steroids
- C. Sugars
- D. Amino acids
Correct answer: A
Rationale: Phospholipids are indeed a crucial component of the plasma membrane. They have a unique structure with hydrophilic heads and hydrophobic tails, which allows them to form the lipid bilayer of the membrane. Steroids, sugars, and amino acids are not primary components of the plasma membrane. Steroids are a different type of lipid, sugars are often found in glycoproteins on the membrane surface, and amino acids are the building blocks of proteins, some of which are membrane proteins, but not the membrane itself.
5. If bacteria are placed in a strong solution of salt water, they will shrink as water moves out of the bacteria. What is this process called?
- A. Dehydration synthesis
- B. Hydrolysis
- C. Osmosis
- D. Isotonic transport
Correct answer: C
Rationale: Osmosis is the process by which water molecules move across a semipermeable membrane from an area of lower solute concentration to an area of higher solute concentration. In this case, when bacteria are placed in a strong solution of salt water, the high concentration of solutes outside the bacteria causes water to move out of the bacteria, leading to shrinkage. This process is known as osmosis. Dehydration synthesis (Choice A) is a process where molecules combine by removing water. Hydrolysis (Choice B) is the breakdown of molecules by the addition of water. Isotonic transport (Choice D) does not accurately describe the specific movement of water in or out of bacterial cells in a hypertonic solution.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access