HESI A2
HESI A2 Physics Quizlet
1. When a fluid flows past a solid object, a thin layer of fluid adheres to the object's surface due to:
- A. Buoyancy
- B. Bernoulli's principle
- C. Boundary layer effect
- D. Surface tension minimization
Correct answer: C
Rationale: The boundary layer effect occurs when a thin layer of fluid near the surface of a solid adheres to it due to viscosity. This layer experiences a velocity gradient as the fluid farther from the surface moves faster, while the fluid closest to the surface is nearly stationary.
2. Why does potential energy increase as particles approach each other?
- A. Attractive forces increase.
- B. Attractive forces decrease.
- C. Repulsive forces increase.
- D. Repulsive forces decrease.
Correct answer: C
Rationale: The correct answer is C: Repulsive forces increase. As particles approach each other, the distance between them decreases, causing the repulsive forces between the particles to increase. This increase in repulsive forces leads to an increase in potential energy as the particles resist being pushed closer together. Choices A and B are incorrect because attractive forces do not increase or decrease in this scenario. Choice D is incorrect because repulsive forces actually increase as particles get closer, leading to a rise in potential energy.
3. Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
- A. H = U + PV
- B. H = U - PV
- C. H = U / PV
- D. H = PV / U
Correct answer: A
Rationale: Enthalpy (H) is defined as H = U + PV, where U represents internal energy, P is pressure, and V is volume. Enthalpy includes both the internal energy of a system and the energy required to create space for the system against an external pressure. Therefore, the correct relationship between enthalpy, internal energy, pressure, and volume is H = U + PV. Choice B is incorrect as subtracting PV would not account for the work done against pressure. Choice C is incorrect as dividing U by PV doesn't represent the definition of enthalpy. Choice D is incorrect as dividing PV by U is not the correct relationship based on the definition of enthalpy.
4. In an electrically neutral atom, the number of:
- A. Electrons is equal to protons
- B. Protons is equal to neutrons
- C. Neutrons are always greater than protons
- D. Electrons are always less than protons
Correct answer: A
Rationale: In an electrically neutral atom, the number of electrons is equal to the number of protons. Electrons carry a negative charge, protons carry a positive charge, and neutrons are neutral. Since the atom is electrically neutral, the positive charge of the protons must balance the negative charge of the electrons, making the numbers of electrons and protons equal. Choice B is incorrect because protons are not equal to neutrons in an atom. Choice C is incorrect because neutrons are not always greater than protons, and choice D is incorrect because electrons are not always less than protons in an atom.
5. For the core of an electromagnet, a material with high:
- A. Resistivity is ideal
- B. Permeability is preferred
- C. Permittivity is crucial
- D. Dielectric strength is essential
Correct answer: B
Rationale: A material with high permeability is preferred for the core of an electromagnet because it allows magnetic field lines to pass through it easily, enhancing the strength of the magnetic field generated. Choice A is incorrect because high resistivity would impede the flow of current in the coil, reducing the strength of the magnetic field. Choice C is incorrect as permittivity is related to electric fields, not magnetic fields. Choice D is also incorrect because dielectric strength is about insulating materials against breakdown under an electric field, not relevant to enhancing magnetic fields.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access