what type of radiation emits helium ions and can be stopped by a piece of paper
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Practice Test

1. Which type of radiation emits helium ions and can be stopped by a piece of paper?

Correct answer: B

Rationale: Alpha radiation emits helium ions, which are helium nuclei without electrons, making them positively charged. These ions are relatively large and heavy compared to beta and gamma radiation. Due to their size and charge, alpha particles interact strongly with matter and are easily stopped. A piece of paper or even human skin can effectively block alpha radiation. Therefore, alpha radiation is the type of radiation that can be stopped by a piece of paper. Beta radiation consists of fast-moving electrons and can penetrate further into materials than alpha radiation, thus not stopped by a piece of paper. Gamma radiation is highly penetrating and requires dense materials like lead or concrete to block it effectively. X-ray radiation, similar to gamma radiation, is also highly penetrating and cannot be stopped by a piece of paper.

2. Which of these elements has the greatest atomic mass?

Correct answer: D

Rationale: Among the elements listed, Tungsten (W) has the greatest atomic mass. The atomic mass of Tungsten is approximately 183.84 atomic mass units (amu), while the atomic masses of the other elements listed are as follows: Gold (Au) is around 196.97 amu, Barium (Ba) is approximately 137.33 amu, and Iodine (I) is about 126.90 amu. Therefore, Tungsten (W) has the greatest atomic mass out of the given elements. Gold (Au) has a higher atomic mass than Barium (Ba) and Iodine (I), making choices A, B, and C incorrect.

3. What are the three types of intermolecular forces?

Correct answer: B

Rationale: The three types of intermolecular forces are hydrogen bonding, dipole interactions, and dispersion forces. Option A includes ionic and covalent bonds, which are intramolecular forces, not intermolecular. Option C includes van der Waals forces, which encompass dipole interactions and dispersion forces, but also includes ionic and covalent bonds. Option D is close but misses dipole interactions, which are distinct from hydrogen bonding and dispersion forces. Therefore, option B is the correct choice as it includes the three specific types of intermolecular forces.

4. What is the oxidation state of the oxygen atom in the compound NaOH?

Correct answer: B

Rationale: In the compound NaOH (sodium hydroxide), the oxidation state of the sodium ion (Na) is +1 as it commonly has a +1 charge in ionic compounds. Oxygen (O) typically has an oxidation state of -2 in most compounds. Since the compound is electrically neutral and the overall charge is zero, the sum of the oxidation states of all atoms in the compound must be zero. Therefore, considering that sodium has an oxidation state of +1, the oxygen atom in NaOH must have an oxidation state of -1 to balance the charges and overall neutrality of the compound. Choice A (-2) is incorrect as this is not the oxidation state of oxygen in this compound. Choice C (0) is incorrect as oxygen in NaOH does not have an oxidation state of 0. Choice D (+2) is incorrect as oxygen typically has a negative oxidation state in compounds, not a positive one.

5. What is a balanced equation?

Correct answer: B

Rationale: A balanced equation is one where the number of each type of atom is the same on both sides, fulfilling the law of conservation of mass. This principle ensures that the total number of atoms of each element is equal in both reactants and products, signifying that no atoms are created or destroyed, but rather rearranged. Choice A is incorrect because a balanced equation has equal numbers of atoms in the reactants and products. Choice C is incorrect as a balanced equation includes both reactants and products. Choice D is incorrect because coefficients are essential in balancing equations by adjusting the number of atoms present.

Similar Questions

What can stop the penetration of beta radiation particles?
What is the correct name of MgO?
What are the products of combustion of a hydrocarbon in excess oxygen?
What is the oxidation state of the chlorine atom in the compound HCl?
What is the product of the decomposition of water?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses