what is the role of a catalyst in a chemical reaction
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Quizlet

1. What is the role of a catalyst in a chemical reaction?

Correct answer: C

Rationale: A catalyst speeds up a chemical reaction by lowering the activation energy required for the reaction to occur. It does not get consumed in the reaction and remains unchanged at the end, allowing it to facilitate multiple reaction cycles. Choice A is incorrect because a catalyst actually speeds up the reaction. Choice B is incorrect because catalysts do have an effect by accelerating the reaction. Choice D is incorrect because catalysts do not stop the reaction, but rather increase the reaction rate.

2. Which substance forms hydroxide ions when placed in water?

Correct answer: D

Rationale: The correct answer is D, lye. Lye, also known as sodium hydroxide (NaOH), is a strong base that forms hydroxide ions (OH-) when placed in water. When lye dissolves in water, it dissociates into sodium ions (Na+) and hydroxide ions, making it an alkaline substance. Lemon juice, battery acid, and vinegar do not form hydroxide ions when placed in water. Lemon juice contains citric acid, battery acid contains sulfuric acid, and vinegar contains acetic acid, none of which produce hydroxide ions when dissolved in water.

3. What does the term amphoteric mean?

Correct answer: B

Rationale: The term 'amphoteric' refers to substances that have the ability to act as both acids and bases depending on the surrounding conditions. This dual nature allows amphoteric substances to donate or accept protons, making them versatile in various chemical reactions. Choice A is incorrect because amphoteric substances can also act as acids. Choice C is incorrect as amphoteric substances can also act as bases. Choice D is incorrect as amphoteric substances can act as either a base or an acid.

4. What are the two types of chemical bonding?

Correct answer: B

Rationale: The correct answer is B: Ionic & covalent. Ionic bonding involves the transfer of electrons between atoms, resulting in the formation of positive and negative ions attracted to each other. Covalent bonding involves the sharing of electrons between atoms to achieve a stable electron configuration. Choice A is incorrect as hydrogen bonding is a type of intermolecular force, not a primary type of chemical bonding. Choice C is incorrect as hydrogen bonding is not a primary type of chemical bonding. Choice D is incorrect as metallic bonding involves the sharing of electrons in a 'sea of electrons' within a metal lattice, not covalent bonding.

5. What type of bond is an electrostatic attraction between two oppositely charged ions?

Correct answer: C

Rationale: An ionic bond forms when one atom transfers electrons to another, resulting in the formation of positively and negatively charged ions. The attraction between these oppositely charged ions creates an electrostatic bond, known as an ionic bond. Choice A, covalent bonds, involve the sharing of electrons, not the transfer. Choice B, metallic bonds, occur between metal atoms and involve a 'sea of electrons' that are delocalized. Choice D, hydrogen bonds, are much weaker interactions between hydrogen atoms and other electronegative atoms like oxygen or nitrogen.

Similar Questions

What can stop the penetration of gamma radiation?
How are elements arranged in the periodic table?
To the nearest whole number, what is the mass of one mole of hydrogen chloride?
Which of these intermolecular forces would result in the lowest boiling point?
How many pairs of electrons are shared between two atoms in a single bond?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses