what is the oxidation state of the oxygen atom in the compound naoh
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. What is the oxidation state of the oxygen atom in the compound NaOH?

Correct answer: B

Rationale: In the compound NaOH (sodium hydroxide), the oxidation state of the sodium ion (Na) is +1 as it commonly has a +1 charge in ionic compounds. Oxygen (O) typically has an oxidation state of -2 in most compounds. Since the compound is electrically neutral and the overall charge is zero, the sum of the oxidation states of all atoms in the compound must be zero. Therefore, considering that sodium has an oxidation state of +1, the oxygen atom in NaOH must have an oxidation state of -1 to balance the charges and overall neutrality of the compound. Choice A (-2) is incorrect as this is not the oxidation state of oxygen in this compound. Choice C (0) is incorrect as oxygen in NaOH does not have an oxidation state of 0. Choice D (+2) is incorrect as oxygen typically has a negative oxidation state in compounds, not a positive one.

2. What is the process of breaking bonds and forming new bonds to create new chemical compounds?

Correct answer: B

Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.

3. What is atomic mass?

Correct answer: B

Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.

4. Which ion would you expect to dominate in water solutions of bases?

Correct answer: D

Rationale: In water solutions of bases, the dominant ion would be OH⁻ (hydroxide ion). Bases release OH⁻ ions when dissolved in water, increasing the concentration of hydroxide ions and leading to a higher pH. This is in contrast to acids, which release H⁺ ions. Therefore, in water solutions of bases, the presence of OH⁻ ions signifies the basic nature of the solution. Choices A, B, and C are incorrect because MgCl₂ is a salt, 2HCl is a compound consisting of two hydrogen ions and one chloride ion, and H⁺ represents a hydrogen ion typically associated with acids, not bases.

5. What is the correct electron configuration for carbon?

Correct answer: B

Rationale: The correct electron configuration for carbon is 1s²2s²2p². This configuration indicates that there are 2 electrons in the first energy level (1s²), 2 electrons in the second energy level (2s²), and 2 electrons in the second energy level (2p²). It adheres to the aufbau principle, which states that electrons fill orbitals starting from the lowest energy level, and the Pauli exclusion principle, which states that each electron in an atom must have a unique set of quantum numbers. Choice A is incorrect because it does not fill the 2p orbital correctly. Choice C is incorrect as it exceeds the number of possible electrons in the 2p orbital. Choice D is incorrect as it includes an electron in the 3s orbital, which is not part of the electron configuration for carbon.

Similar Questions

What is the charge of a beta particle?
How many neutrons does carbon-14 have?
What is the normal body temperature in °C?
When an acid is added to a base, water and a salt form. What kinds of bonds form in these two compounds?
What are positively charged ions called?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses