what is the oxidation state of the nitrogen atom in the compound nh
Logo

Nursing Elites

HESI A2

Chemistry Hesi A2

1. What is the oxidation state of the nitrogen atom in the compound NH3?

Correct answer: B

Rationale: In the compound NH3, nitrogen is bonded to three hydrogen atoms. Hydrogen is always assigned an oxidation state of +1. Since the overall charge of NH3 is zero, the oxidation state of nitrogen must be -1 to balance out the hydrogen's +1 oxidation state. Therefore, the correct oxidation state of the nitrogen atom in NH3 is -1. Choice A (-3) is incorrect because it does not account for the electronegativity of hydrogen. Choice C (+1) and Choice D (+3) are incorrect as the nitrogen atom in NH3 needs to balance the +1 oxidation state of each hydrogen atom, resulting in a total of -3 to maintain the compound's charge neutrality.

2. Which is a property of an ionic compound?

Correct answer: D

Rationale: Ionic compounds are composed of positively and negatively charged ions that are held together by strong electrostatic forces. These ions arrange themselves in a repeating pattern to form a stable and orderly structure known as a crystalline shape. This is a characteristic property of ionic compounds, making choice D the correct answer. Choices A, B, and C are incorrect because ionic compounds typically have high melting points, good conductivity in the molten or dissolved state, and do not involve shared electrons but rather the transfer of electrons between atoms.

3. Which of these intermolecular forces might represent attraction between atoms of a noble gas?

Correct answer: B

Rationale: Noble gases are non-polar molecules without a permanent dipole moment. The only intermolecular force applicable to noble gases is the London dispersion force, also known as Van der Waals forces. This force is a temporary attractive force resulting from the formation of temporary dipoles in non-polar molecules. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding involve significant dipoles or hydrogen atoms bonded to electronegative atoms, which do not apply to noble gases.

4. What type of bond is present in sodium chloride?

Correct answer: B

Rationale: Ionic bonds are found in sodium chloride. In an ionic bond, one atom donates an electron to another atom, resulting in the formation of positively and negatively charged ions that are held together by electrostatic forces of attraction. Sodium chloride is a classic example of an ionic compound, where sodium (Na) donates an electron to chlorine (Cl), forming Na+ and Cl- ions that are attracted to each other, creating a crystal lattice structure. Covalent bonds involve the sharing of electron pairs between atoms, which is not the case in sodium chloride. Metallic bonds occur in metals where electrons are delocalized and shared across a lattice, unlike the specific transfer seen in ionic bonds. Hydrogen bonds are a type of intermolecular force, not the primary bond type present in sodium chloride.

5. What is the role of a catalyst in a chemical reaction?

Correct answer: C

Rationale: A catalyst speeds up a chemical reaction by lowering the activation energy required for the reaction to occur. It does not get consumed in the reaction and remains unchanged at the end, allowing it to facilitate multiple reaction cycles. Choice A is incorrect because a catalyst actually speeds up the reaction. Choice B is incorrect because catalysts do have an effect by accelerating the reaction. Choice D is incorrect because catalysts do not stop the reaction, but rather increase the reaction rate.

Similar Questions

What are positively charged ions called?
What type of reaction involves atoms attempting to achieve stable electron configurations?
What are proteins made up of?
Which is a triatomic allotrope of oxygen?
How can the reaction rate of a chemical reaction be increased?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses