HESI A2
Chemistry HESI A2 Quizlet
1. What are negatively charged ions called?
- A. Neutrons
- B. Protons
- C. Anions
- D. Cations
Correct answer: C
Rationale: Negatively charged ions are called anions. Anions gain electrons and carry a negative charge, which distinguishes them from cations that are positively charged and neutrons and protons that are subatomic particles found in the nucleus of an atom. Choice A, Neutrons, are neutral subatomic particles found in the nucleus of an atom, not negatively charged ions. Choice B, Protons, are positively charged subatomic particles found in the nucleus of an atom, not negatively charged ions. Choice D, Cations, are positively charged ions that lose electrons, which is opposite to the behavior of negatively charged ions.
2. If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?
- A. 1.0 M
- B. 2.0 M
- C. 11.7 M
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: Molarity is defined as the number of moles of solute per liter of solution. In this case, 5 g of NaCl represents 1 mole of NaCl. Given that this 1 mole is dissolved in 500 L of solution, the molarity of the solution can be calculated as follows: Molarity = moles of solute / liters of solution = 1 mole / 500 L = 0.002 M. However, the molarity is usually expressed in moles per liter, so to convert to M, you divide by 0.085 L (which is 500 L in liters) to get 11.7 M. Choice A is incorrect because the molarity is not 1.0 M. Choice B is incorrect because the molarity is not 2.0 M. Choice D is incorrect because the molarity can be determined from the information provided.
3. Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?
- A. Citric acid and potassium phosphate will decrease; nitrogen and oxygen will increase.
- B. Citric acid and potassium phosphate will increase; nitrogen and oxygen will decrease.
- C. All four figures will increase.
- D. All four figures will decrease.
Correct answer: C
Rationale: Solubility generally tends to increase with temperature for most solid solutes in liquid solvents due to higher kinetic energy leading to better solute-solvent interactions. As the temperature increases from 0°C to 20°C, all four solubility figures are expected to increase. Choice A is incorrect because solubility tends to increase with temperature. Choice B is incorrect as well for the same reason. Choice D is incorrect because the solubility of solid solutes typically increases with temperature.
4. Which of the following is a characteristic property of acids?
- A. Sour taste
- B. Bitter taste
- C. Reacts with bases
- D. Slippery feel
Correct answer: A
Rationale: The correct answer is 'A: Sour taste.' Acids are known to have a sour taste, which is a fundamental characteristic property of acids. This taste distinguishes acids from bases, which are more likely to have a bitter taste. The sour taste of acids is due to the presence of hydrogen ions in them. Therefore, when identifying an acid based on taste, the sour taste serves as a key indicator. Choices B, C, and D are incorrect. Bitter taste is associated with bases, not acids. While acids do react with bases (Choice C), this is not a characteristic property of acids but rather a chemical behavior. Slippery feel (Choice D) is a property of bases, not acids.
5. What is another name for aqueous HI?
- A. hydroiodic acid
- B. hydrogen monoiodide
- C. hydrogen iodide
- D. hydriodic acid
Correct answer: D
Rationale: The correct name for aqueous HI is 'hydriodic acid.' When hydrogen iodide (HI) dissolves in water, it forms hydriodic acid. Therefore, 'hydriodic acid' is the appropriate term for aqueous HI. Choice A, 'hydroiodic acid,' is incorrect as it does not reflect the nature of the compound in the aqueous state. Choice B, 'hydrogen monoiodide,' is not a widely recognized term for this compound. Choice C, 'hydrogen iodide,' is the name for HI in the gaseous state, not when it's dissolved in water.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access