the speed of sound in dry air at 20c is 343 ms if the wavelength of a sound wave is 5 m what is its frequency
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. The speed of sound in dry air at 20°C is 343 m/s. If the wavelength of a sound wave is 5 m, what is its frequency?

Correct answer: C

Rationale: The speed of sound (v) can be calculated using the formula: v = f × λ, where f is the frequency and λ is the wavelength. Given that the speed of sound is 343 m/s and the wavelength is 5 m, we can rearrange the formula to solve for frequency: f = v / λ = 343 / 5 = 68.6 Hz. Therefore, the correct frequency is 68.6 Hz. Choices A, B, and D are incorrect as they do not result from the correct calculation based on the given values.

2. Which vehicle has the greatest momentum?

Correct answer: D

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m × v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg × 3 m/s = 27,000 kg·m/s B: 2,000 kg × 24 m/s = 48,000 kg·m/s C: 1,500 kg × 29 m/s = 43,500 kg·m/s D: 500 kg × 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.

3. How do you determine the velocity of a wave?

Correct answer: A

Rationale: The velocity of a wave can be determined by multiplying the frequency of the wave by the wavelength. This relationship is given by the formula: velocity = frequency × wavelength. By multiplying the frequency by the wavelength, you can calculate the speed at which the wave is traveling. This formula is derived from the basic wave equation v = f × λ, where v represents velocity, f is frequency, and λ is wavelength. Therefore, to find the velocity of a wave, one must multiply its frequency by its wavelength. Choices B, C, and D are incorrect. Adding, subtracting, or dividing the frequency and wavelength does not yield the correct calculation for wave velocity. The correct formula for determining wave velocity is to multiply the frequency by the wavelength.

4. For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:

Correct answer: C

Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (ρ) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.

5. Which of the following substances has the highest density?

Correct answer: B

Rationale: Water has the highest density among the options provided. Density is a measure of mass per unit volume. In this case, water in its liquid form is denser than mist, steam, and ice. Ice has a lower density than water because its crystalline structure causes it to be less dense. Mist and steam are forms of water vapor, which are much less dense than liquid water. Therefore, the correct answer is water (choice B).

Similar Questions

A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
An object with a mass of 45 kg has momentum equal to 180 kg⋅m/s. What is the object’s velocity?
In a U-tube manometer, a fluid is used to measure pressure differences. When one side is connected to a pressurized system, the fluid level on that side will:
A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?
Bernoulli's principle for an incompressible, inviscid fluid in steady flow states that the mechanical energy, consisting of:

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses