HESI A2
HESI A2 Physics Quizlet
1. The specific heat capacity of water is about 2 J/g°C. How much energy would you need to heat 1 kilogram of water by 10°C?
- A. 420 J
- B. 4,200 J
- C. 42,000 J
- D. 420,000 J
Correct answer: C
Rationale: The formula to calculate the energy required to heat a substance is Q = m × c × ΔT, where m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Given that 1 kilogram of water is equal to 1,000 grams, the mass (m) is 1,000 g, the specific heat capacity (c) of water is 4.2 J/g°C (not 2 J/g°C), and the change in temperature (ΔT) is 10°C. Substituting these values into the formula: Q = 1,000 × 4.2 × 10 = 42,000 J. Therefore, the correct energy required to heat 1 kilogram of water by 10°C is 42,000 J. Choices A, B, and D are incorrect as they do not consider the correct specific heat capacity of water or the conversion of mass to grams.
2. Two balloons with charges of 5 μC each are placed 25 cm apart. What is the magnitude of the resulting repulsive force between them?
- A. 0.18 N
- B. 1.8 N
- C. 10−3 N
- D. 5 × 10−3 N
Correct answer: B
Rationale: To find the repulsive force between the two charges, we use Coulomb's law: F = k(q1 * q2) / r^2. Here, k is the Coulomb constant (8.99 x 10^9 Nm^2/C^2), q1 and q2 are the charges (5 μC each), and r is the distance between the charges (25 cm = 0.25 m). Substituting these values into the formula: F = (8.99 x 10^9 Nm^2/C^2)(5 x 10^-6 C)(5 x 10^-6 C) / (0.25 m)^2. Calculating this gives F = 1.8 N. Therefore, the magnitude of the resulting repulsive force between the two balloons is 1.8 N. Choice A, C, and D are incorrect as they do not correctly calculate the force using Coulomb's law.
3. Given the four wires described here, which would you expect to have the greatest resistance?
- A. 1 km of American wire gauge 1; diameter 7.35 mm
- B. 1 km of American wire gauge 2; diameter 6.54 mm
- C. 1 km of American wire gauge 3; diameter 5.83 mm
- D. 1 km of American wire gauge 4; diameter 5.19 mm
Correct answer: D
Rationale: The wire with the greatest resistance is the one with the smallest diameter, as resistance is inversely proportional to cross-sectional area. Gauge 4 with a 5.19 mm diameter has the smallest diameter and, therefore, the greatest resistance. Choice A, B, and C have larger diameters compared to choice D, so they would have lower resistance values.
4. A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?
- A. 2 m/s
- B. 5 m/s
- C. 50 m/s
- D. The answer cannot be determined from the information given.
Correct answer: C
Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration × time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² × 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.
5. Which conclusion can be drawn from Ohm’s law?
- A. Voltage and current are inversely proportional when resistance is constant.
- B. The ratio of the potential difference between the ends of a conductor to current is a constant, R.
- C. Voltage is the amount of charge that passes through a point per second.
- D. Power (P) can be calculated by multiplying current (I) by voltage (V).
Correct answer: B
Rationale: Ohm's law states that the ratio of the potential difference (voltage) between the ends of a conductor to the current flowing through it is a constant. Mathematically, this is represented as V = I x R, where V is voltage, I is current, and R is the constant resistance. Therefore, the correct conclusion that can be drawn from Ohm's law is that the ratio of the potential difference between the ends of a conductor to current is a constant, denoted as R. This relationship is fundamental to understanding the behavior of electrical circuits and the effect of resistance on voltage and current. Choice A is incorrect because Ohm's law actually states that voltage and current are directly proportional when resistance is constant. Choice C is incorrect because voltage is not the amount of charge that passes through a point per second; rather, it is the electric potential energy per unit charge. Choice D is incorrect because although power (P) can be calculated by multiplying current (I) by voltage (V), this is not a conclusion directly drawn from Ohm's law.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access