if gas a has four times the molar mass of gas b you would expect it to diffuse through a plug
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Practice Test

1. If gas A has four times the molar mass of gas B, you would expect it to diffuse through a plug ___________.

Correct answer: A

Rationale: When comparing the diffusion rates of two gases, according to Graham's law of diffusion, the rate of diffusion is inversely proportional to the square root of the molar mass. If gas A has four times the molar mass of gas B, the square root of the molar masses ratio (4:1) is 2. This means that gas A would diffuse through a plug at half the rate of gas B. Therefore, the correct answer is A, at half the rate of gas B. Choices B, C, and D are incorrect because they do not reflect the correct relationship between the molar masses and the rates of diffusion according to Graham's law.

2. Which of these elements has the greatest atomic mass?

Correct answer: D

Rationale: Among the elements listed, Tungsten (W) has the greatest atomic mass. The atomic mass of Tungsten is approximately 183.84 atomic mass units (amu), while the atomic masses of the other elements listed are as follows: Gold (Au) is around 196.97 amu, Barium (Ba) is approximately 137.33 amu, and Iodine (I) is about 126.90 amu. Therefore, Tungsten (W) has the greatest atomic mass out of the given elements. Gold (Au) has a higher atomic mass than Barium (Ba) and Iodine (I), making choices A, B, and C incorrect.

3. Which of the following elements is a noble gas?

Correct answer: C

Rationale: The correct answer is C: Argon. Argon is a noble gas, part of Group 18 in the periodic table. Noble gases are colorless, odorless, and typically non-reactive under normal conditions. Other elements in this group include helium, neon, krypton, xenon, and radon. Argon finds wide applications in welding, lighting, and scientific research. Choices A, B, and D are not noble gases. Hydrogen is a non-metal, Fluorine is a halogen, and Nitrogen is a diatomic non-metal gas.

4. How does increasing the concentration of reactants affect a chemical reaction?

Correct answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

5. How many electron pairs are shared to form a double covalent bond?

Correct answer: B

Rationale: The correct answer is B. In a double covalent bond, two pairs of electrons are shared between two atoms. This sharing of two electron pairs results in a stronger bond compared to a single covalent bond where only one pair of electrons is shared. Choice A is incorrect because a single covalent bond involves the sharing of one pair of electrons. Choices C and D are incorrect as they do not represent the correct number of electron pairs shared in a double covalent bond.

Similar Questions

Which of the following best describes an endothermic reaction?
Which branch of chemistry deals with the quantities and numeric relationships between compounds in a chemical reaction?
Carbon-12 and carbon-14 are isotopes. What do they have in common?
What happens in a single displacement reaction?
What is the number of protons in the atomic nucleus of an alkali metal?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses