HESI A2
Chemistry HESI A2 Practice Test
1. Which is a property of an ionic compound?
- A. Low melting point
- B. Poor conductivity
- C. Shared electrons
- D. Crystalline shape
Correct answer: D
Rationale: Ionic compounds are composed of positively and negatively charged ions that are held together by strong electrostatic forces. These ions arrange themselves in a repeating pattern to form a stable and orderly structure known as a crystalline shape. This is a characteristic property of ionic compounds, making choice D the correct answer. Choices A, B, and C are incorrect because ionic compounds typically have high melting points, good conductivity in the molten or dissolved state, and do not involve shared electrons but rather the transfer of electrons between atoms.
2. What is the term used when an atom gains one or more electrons?
- A. Cation
- B. Anion
- C. Isotope
- D. Electron
Correct answer: B
Rationale: When an atom gains electrons, it becomes negatively charged and is called an anion. An anion is formed when an atom gains one or more electrons, leading to an excess of negative charge. Choice A, 'Cation,' is incorrect because a cation is formed when an atom loses electrons, resulting in a positively charged ion. Choice C, 'Isotope,' refers to atoms of the same element with different numbers of neutrons and is not related to gaining electrons. Choice D, 'Electron,' is the particle that an atom gains to become an anion, not the term for the atom itself after gaining electrons.
3. Balance this equation: Zn + HCl → ZnCl + H2.
- A. Zn + 2HCl → ZnCl + H2
- B. Zn + HCl → 2ZnCl + H2
- C. 2Zn + 2HCl → 2ZnCl + H2
- D. Zn + 4HCl → ZnCl + H2
Correct answer: C
Rationale: The given unbalanced equation is Zn + HCl → ZnCl + H2. To balance it, we need to have equal atoms on both sides of the equation. The balanced equation is 2Zn + 2HCl → 2ZnCl + H2. This balanced equation shows that two atoms of Zn combine with two molecules of HCl to form two molecules of ZnCl and one molecule of H2. Choice A is incorrect because it does not balance the equation. Choice B is incorrect as it does not have the same number of atoms on both sides. Choice D is incorrect because it does not balance the equation properly, resulting in an unequal number of atoms on both sides.
4. Which of these intermolecular forces might represent attraction between atoms of a noble gas?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Keesom interaction
- D. Hydrogen bonding
Correct answer: B
Rationale: Noble gases are non-polar molecules without a permanent dipole moment. The only intermolecular force applicable to noble gases is the London dispersion force, also known as Van der Waals forces. This force is a temporary attractive force resulting from the formation of temporary dipoles in non-polar molecules. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding involve significant dipoles or hydrogen atoms bonded to electronegative atoms, which do not apply to noble gases.
5. Which substance shows a decrease in solubility in water with an increase in temperature?
- A. NaCl
- B. O
- C. KI
- D. CaCl
Correct answer: C
Rationale: Potassium iodide (KI) shows a decrease in solubility in water with an increase in temperature. This is due to the dissolution of KI in water being an endothermic process. When the temperature rises, the equilibrium shifts toward the solid state, leading to a decrease in solubility. Therefore, as the temperature increases, KI becomes less soluble in water. Choice A (NaCl) and Choice D (CaCl) do not exhibit a decrease in solubility with an increase in temperature. NaCl and CaCl are generally more soluble in water at higher temperatures. Choice B (Oxygen) is a gas and not typically considered in solubility discussions involving solids or liquids dissolving in water.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access