electric motors convert electrical energy primarily into
Logo

Nursing Elites

HESI A2

HESI A2 Physics Quizlet

1. Electric motors convert electrical energy primarily into:

Correct answer: C

Rationale: Electric motors convert electrical energy into mechanical energy. When electricity passes through the coils in the motor, it creates a magnetic field that interacts with the field from the permanent magnets, resulting in a force that drives motion. Choice A, 'Thermal energy,' is incorrect as electric motors are designed to minimize heat production. Choice B, 'Light,' is incorrect as electric motors do not produce light as a primary output. Choice D, 'Sound waves,' is incorrect as the primary output of an electric motor is mechanical motion, not sound waves.

2. A pitcher throws a 45-g baseball at a velocity of 42 meters per second. What is the ball’s momentum?

Correct answer: B

Rationale: Momentum is calculated by multiplying mass (in kg) by velocity (in m/s). The mass of the baseball is 0.045 kg (45 grams converted to kg), and the velocity is 42 m/s. Momentum = 0.045 kg × 42 m/s = 1.89 kg⋅m/s. Therefore, the correct answer is 1.89 kg⋅m/s. Choice A is incorrect as it incorrectly converts the mass from grams to kg. Choice C and D are incorrect due to calculation errors.

3. When a junked car is compacted, which statement is true?

Correct answer: C

Rationale: When a junked car is compacted, its volume decreases while its mass remains the same. As a result, the car's density increases because density is mass divided by volume. Choice A is incorrect because the mass of the car remains the same. Choice B is incorrect because the mass does not decrease. Choice D is incorrect because the density increases as the volume decreases, not decreases.

4. Which of the following is NOT a mode of heat transfer between a system and its surroundings?

Correct answer: A

Rationale: Isothermalization is not a mode of heat transfer. The three main modes of heat transfer are conduction (through direct contact), convection (through fluid motion), and radiation (through electromagnetic waves). In this question, choice A, conduction, is not a mode of heat transfer between a system and its surroundings. Conduction refers to heat transfer through direct contact between particles, without the movement of the particles themselves. Therefore, A is the correct answer. Choices B, C, and D are incorrect as they represent valid modes of heat transfer.

5. The specific heat capacity of water is about 2 J/g°C. How much energy would you need to heat 1 kilogram of water by 10°C?

Correct answer: C

Rationale: The formula to calculate the energy required to heat a substance is Q = m × c × ΔT, where m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Given that 1 kilogram of water is equal to 1,000 grams, the mass (m) is 1,000 g, the specific heat capacity (c) of water is 4.2 J/g°C (not 2 J/g°C), and the change in temperature (ΔT) is 10°C. Substituting these values into the formula: Q = 1,000 × 4.2 × 10 = 42,000 J. Therefore, the correct energy required to heat 1 kilogram of water by 10°C is 42,000 J. Choices A, B, and D are incorrect as they do not consider the correct specific heat capacity of water or the conversion of mass to grams.

Similar Questions

In open-channel flow, a critical property is the free surface, which refers to the:
Viscosity, μ, is a transport property of a fluid that reflects its:
The first law of thermodynamics is a principle of energy conservation. It states that:
How do a scalar quantity and a vector quantity differ?
Two objects attract each other with a gravitational force of 12 units. If you double the mass of both objects, what is the new force of attraction between them?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses