HESI A2
Biology HESI A2 Practice Exam
1. Duchenne muscular dystrophy is a recessive sex-linked trait carried on the X chromosome. In an example of an unaffected father and a female carrier who have two daughters and two sons, which is the predicted outcome?
- A. Both daughters will carry the disease.
- B. Both sons will carry the disease.
- C. One daughter may have the disease.
- D. One son may have the disease.
Correct answer: C
Rationale: Duchenne muscular dystrophy is a recessive sex-linked trait carried on the X chromosome. Since the father is unaffected and does not carry the disease, he must have a normal X chromosome. The mother is a carrier, which means she has one normal X chromosome and one X chromosome with the disease allele. The daughters will inherit one X chromosome from each parent; one would be normal, and the other has a chance of carrying the disease allele. So, there is a 50% chance that one daughter may have the disease, as she could inherit the X chromosome with the disease allele. The sons will inherit the Y chromosome from the father and the X chromosome from the mother, so they will not be affected by the disease. Therefore, the predicted outcome is that one daughter may have the disease, while the sons will not carry the disease. This rules out choices A, B, and D.
2. How are lipids different from other organic molecules?
- A. They are indivisible.
- B. They are not water soluble.
- C. They contain zinc.
- D. They form long proteins.
Correct answer: B
Rationale: The correct answer is B: 'They are not water soluble.' Lipids are not water-soluble, which distinguishes them from other organic molecules. Choice A is incorrect because lipids are not indivisible; they can be broken down into fatty acids and glycerol. Choice C is incorrect as lipids do not necessarily contain zinc; they are a diverse group of molecules. Choice D is incorrect because lipids do not form long proteins; proteins are made up of amino acids, not lipids.
3. How should a researcher test the hypothesis that radiation from cell phones is significant enough to raise the temperature of water in a test tube?
- A. Dial a cell phone that rests beside a test tube of water, let it ring for two minutes, and record the temperature of the water before and after the two-minute interval.
- B. Dial a cell phone that rests beside a test tube of water; let it ring for two, three, and four minutes; and record the temperature of the water before and after each interval.
- C. Use three different brands of cell phone; dial each as it rests beside its own test tube of water, let it ring for two minutes, and record the temperature of the water before and after the two-minute interval.
- D. Use three different brands of cell phone, dial each and let one ring for two minutes, one for three minutes, and one for four minutes; record the temperature of the water before and after each interval.
Correct answer: A
Rationale: To test the hypothesis that radiation from cell phones raises the temperature of water in a test tube, the most appropriate method is to dial a cell phone next to a test tube of water, let it ring for a consistent two-minute interval, and record the temperature before and after. Choice A is correct because it provides a controlled approach to isolate the impact of the phone's radiation on the water temperature. Choices B, C, and D introduce additional variables that could confound the results. Choice B varies the duration of exposure, making it difficult to attribute temperature changes specifically to the radiation. Choice C introduces the factor of different cell phone brands, which could introduce variability not related to radiation. Choice D also varies exposure times and introduces the factor of multiple phone brands, making it harder to determine the direct impact of cell phone radiation on water temperature. Therefore, choice A is the most suitable option for this experiment.
4. What kind of bond connects sugar and phosphate in DNA?
- A. hydrogen
- B. ionic
- C. covalent
- D. overt
Correct answer: C
Rationale: Sugar and phosphate are indeed connected by covalent bonds in DNA. Covalent bonds involve the sharing of electrons between atoms, which is essential for forming the backbone of the DNA molecule. Hydrogen bonds (Choice A) are important in holding the nitrogenous bases together in the DNA double helix but do not connect sugar and phosphate. Ionic bonds (Choice B) involve the transfer of electrons between atoms and are not the primary bond connecting sugar and phosphate in DNA. 'Overt' (Choice D) is not a type of chemical bond and is an incorrect distractor.
5. From which component do RNA and DNA derive their names?
- A. From the sugar each contains
- B. From the structure of their nucleotides
- C. From the information they transfer
- D. From their formative processes
Correct answer: A
Rationale: RNA and DNA derive their names from the sugar each contains. RNA stands for Ribonucleic Acid, with 'ribo' indicating the ribose sugar in its structure. DNA stands for Deoxyribonucleic Acid, with 'deoxyribo' referring to the deoxyribose sugar in its structure. The sugars in RNA and DNA molecules distinguish them and are the basis for their names. Choices B, C, and D are incorrect as they do not accurately explain how RNA and DNA derive their names.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access