according to bernoullis principle when the flow velocity v of an incompressible fluid increases in a constricted pipe the pressure p will
Logo

Nursing Elites

HESI A2

HESI A2 Physics Practice Test

1. According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:

Correct answer: B

Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.

2. How do a scalar quantity and a vector quantity differ?

Correct answer: C

Rationale: The correct answer is C. The main difference between a scalar quantity and a vector quantity lies in the presence of direction. A vector quantity has both magnitude and direction, while a scalar quantity has magnitude only, without any specified direction. Examples of scalar quantities include distance, speed, temperature, and energy, whereas examples of vector quantities include displacement, velocity, force, and acceleration. Choices A, B, and D are incorrect because they incorrectly describe the characteristics of scalar and vector quantities.

3. What does Coulomb’s law relate to?

Correct answer: A

Rationale: Coulomb's law is a fundamental principle in physics that deals with the electrostatic interaction between charged particles. It states that the force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. This law is crucial in understanding and predicting the behavior of electrically charged objects. Choices B, C, and D are incorrect because Coulomb's law specifically focuses on electrostatic interactions between charges, not rigid body motion, heat conduction, or universal gravitation.

4. Amanda uses 100 N of force to push a lawnmower around her lawn. If she mows 20 rows measuring 30 meters each, how much work does she do?

Correct answer: C

Rationale: The work done by Amanda pushing the lawnmower is calculated by multiplying the force applied (100 N) by the distance over which the force is applied (the total distance mowed). Since Amanda mows 20 rows, each measuring 30 meters, the total distance mowed is 20 rows x 30 meters/row = 600 meters. Therefore, the work done is 100 N x 600 m = 60,000 N⋅m. Option A and B are incorrect as they do not account for the total distance mowed. Option D is incorrect as the work done can be accurately calculated based on the information provided.

5. A Carnot cycle is a theoretical ideal heat engine operating between two heat reservoirs at different temperatures. Which of the following statements is NOT true about a Carnot cycle?

Correct answer: C

Rationale: The statement that is NOT true is C. Although part of the Carnot cycle operates isothermally, not the entire cycle operates isothermally. The Carnot cycle consists of both isothermal and adiabatic processes. Choice A is incorrect because the efficiency of a Carnot cycle is indeed solely dependent on the absolute temperatures of the hot and cold reservoirs. Choice B is correct as a Carnot cycle is reversible, allowing the process to be run in both directions with the same efficiency. Choice D is also true as the Carnot cycle is the most efficient heat engine operating between the same two reservoir temperatures. Therefore, the correct answer is C.

Similar Questions

Which mathematical quantity is scalar?
A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?
In open-channel flow, a critical property is the free surface, which refers to the:
In a scenario where a transverse wave transports energy from north to south, in what direction do the particles in the medium move?
If a 5-kg ball is moving at 5 m/s, what is its momentum?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses