a salt solution has a molarity of 5 m how many moles of this salt are present in 0 l of this solution
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Practice Test

1. A salt solution has a molarity of 5 M. How many moles of this salt are present in 0 L of this solution?

Correct answer: A

Rationale: Molarity is defined as the number of moles of solute per liter of solution. A molarity of 5 M indicates there are 5 moles of salt in 1 liter of the solution. Since the volume of the solution is 0 liters, multiplying the molarity by 0 liters results in 0 moles of salt (5 moles/L x 0 L = 0 moles). Therefore, the correct answer is 0. Option B, 1.5, is incorrect because it doesn't consider the volume being 0 liters. Options C and D, 2 and 3 respectively, are also incorrect as they do not account for the zero volume of the solution. Hence, there are no moles of salt present in 0 liters of the solution.

2. Balance this equation: Fe + Cl2 → FeCl3

Correct answer: B

Rationale: In the given equation, Fe combines with Cl to form FeCl3. To balance the equation, we need to have the same number of each element on both sides. Since Cl is represented as Cl2 in the equation, we need 3 Cl2 molecules to balance Fe, resulting in 2Fe + 3Cl2 → 2FeCl3. Choice A is incorrect because it only balances Fe but not Cl2. Choice C is incorrect as it balances Fe but not Cl2. Choice D is incorrect as it balances Fe but overbalances Cl2.

3. What is the process of breaking bonds and forming new bonds to create new chemical compounds?

Correct answer: B

Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.

4. Which of the following substances is a base?

Correct answer: C

Rationale: The correct answer is 'Ammonia' (Choice C) as it is a common example of a base. Bases are substances that release hydroxide ions (OH-) in aqueous solutions, helping to increase the pH level. Ammonia is a weak base that can accept a proton (H+) to form ammonium hydroxide. In contrast, water (Choice A), sodium chloride (Choice B), and salt (Choice D) are not bases; water is neutral, while sodium chloride and salt are neutral compounds composed of a cation and an anion.

5. What can stop the penetration of beta radiation particles?

Correct answer: C

Rationale: Beta radiation particles are high-energy, fast-moving electrons or positrons. Aluminum foil is effective in stopping beta radiation due to its ability to absorb and block these particles. When beta particles interact with the aluminum foil, they lose energy and are absorbed, preventing their penetration. Plastic and glass are not as effective as aluminum foil in stopping beta radiation. While concrete provides some shielding against beta particles, aluminum foil is a more suitable material for this purpose as it offers better absorption and blocking capabilities.

Similar Questions

How many neutrons are in an atom of carbon-12?
Which of the following elements is a halogen?
Which state of matter has a definite volume but takes the shape of its container?
What are the three types of intermolecular forces?
What is the charge of a beta particle?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses