HESI A2
Chemistry HESI A2 Practice Test
1. Which of these types of intermolecular force is the strongest?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Keesom interaction
- D. Hydrogen bonding
Correct answer: D
Rationale: Hydrogen bonding is the strongest type of intermolecular force among the options provided. It occurs when a hydrogen atom is covalently bonded to a highly electronegative atom (such as nitrogen, oxygen, or fluorine) and forms a strong electrostatic attraction with an unshared pair of electrons on another electronegative atom. This type of bond is stronger than dipole-dipole interactions, London dispersion forces, and Keesom interactions due to the significant electronegativity difference between the hydrogen and the electronegative atom involved in the bond. The presence of hydrogen bonding contributes to unique properties in substances, such as high boiling and melting points, making it a crucial force in various biological and chemical processes.
2. Which compound contains a polar covalent bond?
- A. O
- B. F
- C. Br
- D. H₂O
Correct answer: D
Rationale: The compound 'H₂O' (water) contains a polar covalent bond. In a water molecule, the oxygen atom is more electronegative than the hydrogen atoms. As a result, the electrons in the O-H bonds are unevenly shared, leading to a partial negative charge on the oxygen atom and partial positive charges on the hydrogen atoms. This unequal sharing of electrons creates a polar covalent bond in water. Choices A, B, and C are incorrect because they represent individual elements, not compounds, and do not involve the concept of polar covalent bonds.
3. What effect does increasing the surface area of a reactant have?
- A. Decreases the reaction rate
- B. Has no effect
- C. Increases the reaction rate
- D. Stops the reaction
Correct answer: C
Rationale: Increasing the surface area of a reactant leads to more particles being exposed to the reaction, which in turn increases the reaction rate. This is because a larger surface area provides more sites for collisions between reacting particles, resulting in a higher frequency of successful collisions and thus accelerating the reaction. Choice A, 'Decreases the reaction rate,' is incorrect because increasing surface area actually accelerates the reaction. Choice B, 'Has no effect,' is incorrect as increasing surface area does have a significant effect on the reaction rate. Choice D, 'Stops the reaction,' is incorrect as increasing surface area does not stop the reaction but rather enhances it.
4. What term is used to describe the emission of particles from an unstable nucleus?
- A. Radioactivity
- B. Radiation
- C. Decay
- D. Fusion
Correct answer: A
Rationale: Radioactivity is the term used to describe the emission of particles from an unstable nucleus. When a nucleus is unstable, it undergoes radioactive decay by emitting particles such as alpha or beta particles. This process releases energy and transforms the unstable nucleus into a more stable configuration. Choice B, 'Radiation,' is a broad term that encompasses various forms of energy emitted from a source; it is not specific to the emission from an unstable nucleus. Choice C, 'Decay,' is closely related but doesn't specifically indicate the emission of particles from an unstable nucleus. Choice D, 'Fusion,' refers to the process of combining nuclei to form a heavier nucleus, not the emission of particles from an unstable nucleus.
5. What type of bond is an electrostatic attraction between two oppositely charged ions?
- A. Covalent
- B. Metallic
- C. Ionic
- D. Hydrogen
Correct answer: C
Rationale: An ionic bond forms when one atom transfers electrons to another, resulting in the formation of positively and negatively charged ions. The attraction between these oppositely charged ions creates an electrostatic bond, known as an ionic bond. Choice A, covalent bonds, involve the sharing of electrons, not the transfer. Choice B, metallic bonds, occur between metal atoms and involve a 'sea of electrons' that are delocalized. Choice D, hydrogen bonds, are much weaker interactions between hydrogen atoms and other electronegative atoms like oxygen or nitrogen.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access