HESI A2
HESI A2 Physics
1. Which of the following describes a vector quantity?
- A. 5 miles per hour due southwest
- B. 5 miles per hour
- C. 5 miles
- D. None of the above
Correct answer: A
Rationale: A vector quantity is characterized by both magnitude and direction. In the provided options, choice A, '5 miles per hour due southwest,' fits this definition as it includes both the magnitude (5 miles per hour) and the direction (southwest), making it a vector quantity. Choices B and C only provide the magnitude without indicating any direction, hence they do not represent vector quantities.
2. Sublimation is the change in matter from solid to gas or gas to solid without passing through a liquid phase. Outside of the laboratory, which solid provides the best example of this?
- A. Iron
- B. Silver
- C. Salt crystal
- D. Dry ice
Correct answer: D
Rationale: Dry ice (solid carbon dioxide) provides the best example of sublimation outside of the laboratory. When dry ice is exposed to normal atmospheric conditions, it changes directly from a solid to a gas without passing through a liquid phase. This process is commonly observed in everyday situations such as creating 'smoke' or 'fog' effects. Choices A, B, and C (Iron, Silver, and Salt crystal) do not undergo sublimation. Iron and Silver melt and then vaporize, while Salt crystal dissolves in water, and the resulting solution evaporates, which involves a liquid phase.
3. When light travels from air into a denser medium like glass, its speed:
- A. Increases
- B. Decreases
- C. Remains constant
- D. Becomes unpredictable
Correct answer: B
Rationale: When light travels from air into a denser medium like glass, its speed decreases. This is because the higher refractive index of the denser medium causes light to slow down as it propagates through the medium. Choice A is incorrect because the speed of light decreases in a denser medium. Choice C is incorrect because the speed of light changes when it enters a denser medium. Choice D is incorrect because the change in speed is predictable based on the refractive index of the medium.
4. A 110-volt appliance draws 0 amperes. How many watts of power does it require?
- A. 0 watts
- B. 108 watts
- C. 112 watts
- D. 220 watts
Correct answer: A
Rationale: When a 110-volt appliance draws 0 amperes, it means that the power consumption is zero as well. The formula to calculate power is P = V x I, where P is power in watts, V is voltage in volts, and I is current in amperes. Since the current is 0 amperes, the power required by the appliance is also 0 watts. Therefore, the correct answer is 0 watts. Choice B, 108 watts, is incorrect because there is no current drawn. Choice C, 112 watts, and choice D, 220 watts, are incorrect as well since the appliance is not consuming any power when drawing 0 amperes.
5. A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
- A. 660 amperes
- B. 150 amperes
- C. 6.5 amperes
- D. 0.15 amperes
Correct answer: C
Rationale: To calculate the current being drawn by the refrigerator, you can use the formula: Current (I) = Power (P) / Voltage (V). Given that the power of the refrigerator is 780 watts and the voltage is 120 volts, you can plug these values into the formula to find the current: I = 780 watts / 120 volts = 6.5 amperes. Therefore, the current being drawn by the 780-watt refrigerator is 6.5 amperes. Choice A, 660 amperes, is incorrect as it is significantly higher than the correct answer. Choice B, 150 amperes, is also incorrect and too high. Choice D, 0.15 amperes, is incorrect as it is too low. The correct answer is 6.5 amperes.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access