where would you expect tap water to fall on the ph scale
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. Where would you expect tap water to fall on the pH scale?

Correct answer: C

Rationale: Tap water typically falls within the pH range of 6 to 8, making it slightly acidic to neutral. Most municipal water systems aim to provide water that is safe for consumption and falls within this pH range. A pH level of 7 is considered neutral, so tap water may vary slightly on either side of this number but typically remains within the 6 to 8 range to ensure it is safe for consumption. Choices A, B, and D are incorrect because tap water is not expected to have a pH as low as 1-3 (highly acidic) or as high as 8-10 (alkaline); it usually falls within the slightly acidic to neutral range, hence falling between 6 and 8 on the pH scale.

2. How many protons does Potassium have?

Correct answer: B

Rationale: Potassium, with the atomic symbol K, has 19 protons, which is equal to its atomic number. The number of protons determines the element's identity, and in the case of Potassium, it is 19. Choice A (18) is incorrect as it does not correspond to Potassium's proton number. Choice C (20) and Choice D (21) are also incorrect as they do not match the actual number of protons in Potassium.

3. A chemist takes 100 mL of a 40 g NaCl solution and dilutes it to 1L. What is the concentration (molarity) of the new solution?

Correct answer: C

Rationale: Initially, the chemist has 40 g of NaCl in 100 mL of solution. To find the initial molarity, we need to calculate the number of moles of NaCl using the molar mass of NaCl (58.44 g/mol). After dilution to 1 L, the molarity of the new solution can be calculated by dividing the moles of NaCl by the total volume in liters. Therefore, the concentration (molarity) of the new solution is 0.40 M NaCl. Choice A (0.04 M NaCl) is incorrect because it doesn't consider the correct molar concentration after dilution. Choice B (0.25 M NaCl) is incorrect as it also doesn't account for the correct molar concentration post-dilution. Choice D (2.5 M NaCl) is incorrect as it is too concentrated given the initial amount of NaCl and the dilution factor.

4. Which of the following factors would not affect rates of reaction?

Correct answer: D

Rationale: Time would not directly affect rates of reaction. The rate of a chemical reaction is determined by factors that affect the frequency of successful collisions between reactant molecules, leading to a reaction. Temperature, surface area, and pressure can influence reaction rates by impacting the kinetic energy of molecules, the exposed surface for collisions, and the concentration of reactants, respectively. However, time, in the context of this question, does not alter the rate of reaction but may affect the extent of the reaction or the amount of product formed over time.

5. What is the name of the force that holds ionic compounds together?

Correct answer: B

Rationale: Ionic bonds are the forces that hold ionic compounds together. In ionic compounds, positively and negatively charged ions are held together by electrostatic forces of attraction, forming a stable structure. Covalent bonds involve the sharing of electrons between atoms, not the transfer of electrons like in ionic bonds. Hydrogen bonds are a type of intermolecular force, not the primary force in holding ionic compounds together. Metallic bonds are found in metals and involve a 'sea of electrons' that hold metal atoms together, different from the electrostatic attraction between ions in ionic compounds.

Similar Questions

What happens in a single displacement reaction?
Which law states that matter can neither be created nor destroyed during a chemical reaction?
What is another name for aqueous HI?
Which particles are emitted during radioactivity?
What are neutral particles called?

Access More Features

HESI A2 Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses