what is the molarity of a solution containing 45 moles of nacl in 4 liters
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. What is the molarity of a solution containing 45 moles of NaCl in 4 liters?

Correct answer: A

Rationale: To calculate the molarity of a solution, you use the formula: Molarity (M) = moles of solute / liters of solution. In this case, M = 45 moles / 4 L = 11.25 M. The correct answer is 0.11 M NaCl. Choice B is incorrect as it doesn't match the calculated value. Choice C is also incorrect as it is significantly higher than the correct molarity. Choice D is incorrect as it is excessively high compared to the calculated value.

2. To the nearest whole number, what is the mass of one mole of hydrogen iodide?

Correct answer: C

Rationale: The molar mass of hydrogen iodide (HI) is the sum of the atomic masses of its constituent elements. Hydrogen (H) has a molar mass of approximately 1 g/mol, and iodine (I) has a molar mass of about 127 g/mol. Thus, the molar mass of hydrogen iodide (HI) is approximately 1 + 127 = 128 g/mol. Rounding to the nearest whole number, the molar mass of hydrogen iodide is 128 g/mol, which is closest to choice C. Choice A (2 g/mol) is too low and does not reflect the correct molar mass of hydrogen iodide. Choice B (58 g/mol) is significantly lower than the actual molar mass. Choice D (128 g/mol) matches the calculated molar mass but is not the nearest whole number as requested.

3. How does increasing the concentration of reactants affect a chemical reaction?

Correct answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

4. Which of these types of intermolecular force is the strongest?

Correct answer: D

Rationale: Hydrogen bonding is the strongest type of intermolecular force among the options provided. It occurs when a hydrogen atom is covalently bonded to a highly electronegative atom (such as nitrogen, oxygen, or fluorine) and forms a strong electrostatic attraction with an unshared pair of electrons on another electronegative atom. This type of bond is stronger than dipole-dipole interactions, London dispersion forces, and Keesom interactions due to the significant electronegativity difference between the hydrogen and the electronegative atom involved in the bond. The presence of hydrogen bonding contributes to unique properties in substances, such as high boiling and melting points, making it a crucial force in various biological and chemical processes.

5. Which of the following is not an allotrope of carbon?

Correct answer: C

Rationale: The correct answer is C: Fluorine. Allotropes of carbon are different forms of the same element. Diamonds, graphite, and buckminsterfullerene are all allotropes of carbon. However, fluorine is a separate chemical element and not an allotrope of carbon. Therefore, fluorine does not belong to the group of carbon allotropes.

Similar Questions

What are positively charged ions called?
In which state of matter are particles packed tightly together in a fixed position?
What is the correct formula for iron III oxide?
How many neutrons are in an atom of uranium-235?
What is a balanced equation?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses