HESI A2
Chemistry Hesi A2
1. What is the correct electron configuration for carbon?
- A. 1s²2s²2p¹
- B. 1s²2s²2p²
- C. 1s²2s²2p³
- D. 1s²2s²2p⁶3s¹
Correct answer: B
Rationale: The correct electron configuration for carbon is 1s²2s²2p². This configuration indicates that there are 2 electrons in the first energy level (1s²), 2 electrons in the second energy level (2s²), and 2 electrons in the second energy level (2p²). It adheres to the aufbau principle, which states that electrons fill orbitals starting from the lowest energy level, and the Pauli exclusion principle, which states that each electron in an atom must have a unique set of quantum numbers. Choice A is incorrect because it does not fill the 2p orbital correctly. Choice C is incorrect as it exceeds the number of possible electrons in the 2p orbital. Choice D is incorrect as it includes an electron in the 3s orbital, which is not part of the electron configuration for carbon.
2. What are neutral particles called?
- A. Neutrons
- B. Protons
- C. Electrons
- D. Cations
Correct answer: A
Rationale: Neutral particles, which have no electric charge, are known as neutrons. Neutrons are found in the nucleus of an atom along with protons. Electrons carry a negative charge and orbit the nucleus. Cations are positively charged ions formed by losing electrons. Therefore, the correct answer is 'Neutrons' as they are the neutral particles in an atom, unlike protons, electrons, or cations.
3. The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?
- A. 0.28M
- B. 1.8M
- C. 2.8M
- D. 18M
Correct answer: C
Rationale: To calculate the molarity of the solution, we first need to determine the moles of solute (glucose) and solvent (water) separately. The molar mass of glucose is 180 g/mol. First, calculate the moles of glucose: 5 g / 180 g/mol = 0.02778 mol of glucose. Next, calculate the moles of water: 100 g / 18 g/mol = 5.56 mol of water. Now, calculate the total moles in the solution: 0.02778 mol glucose + 5.56 mol water = 5.5878 mol. Finally, calculate the molarity: Molarity = moles of solute / liters of solution. Since the total mass of the solution is 100 g + 5 g = 105 g = 0.105 kg, which is equal to 0.105 L, the molarity is 5.5878 mol / 0.105 L = 53.22 M, which rounds to 2.8M. Therefore, the correct answer is 2.8M. Choices A, B, and D are incorrect because they do not reflect the accurate molarity calculation based on the moles of solute and volume of the solution.
4. Which of the following compounds is ionic?
- A. NaCl
- B. H₂O
- C. HCl
- D. NH₃
Correct answer: A
Rationale: The correct answer is NaCl (sodium chloride). Ionic compounds are formed by the transfer of electrons between a metal and a nonmetal. In NaCl, sodium (Na) is a metal, and chlorine (Cl) is a nonmetal. Sodium donates an electron to chlorine, leading to the formation of the ionic bond between them. This results in the formation of an ionic compound, where positively charged sodium ions are attracted to negatively charged chloride ions, creating a crystal lattice structure. Choices B, C, and D are not ionic compounds. H₂O (water) is a covalent compound formed by the sharing of electrons between two nonmetals (oxygen and hydrogen). HCl (hydrogen chloride) and NH₃ (ammonia) are also covalent compounds involving nonmetals sharing electrons, not transferring them.
5. What is the correct name of AgNO₃?
- A. Argent nitrous
- B. Argent oxide
- C. Silver nitrite
- D. Silver nitrate
Correct answer: D
Rationale: The correct name for AgNO₃ is silver nitrate. In chemical nomenclature, the element symbol Ag represents silver, and the polyatomic ion NO₃ is known as nitrate. Therefore, when the silver ion (Ag⁺) combines with the nitrate ion (NO₃⁻), the resulting compound is named silver nitrate (AgNO₃). Choices A, B, and C are incorrect because they do not accurately represent the composition of AgNO₃. Argent nitrous (Choice A) and Argent oxide (Choice B) do not reflect the correct anion, and Silver nitrite (Choice C) uses a different anion altogether.
Similar Questions
Access More Features
HESI A2 Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access