HESI A2
Chemistry HESI A2 Practice Test
1. What is the correct electron configuration for lithium?
- A. 1s²2s¹
- B. 1s²2s²
- C. 1s²2s¹2p¹
- D. 1s¹2s¹2p²
Correct answer: A
Rationale: The electron configuration for lithium is 1s²2s¹. Lithium has 3 electrons, and the configuration indicates that the first two electrons fill the 1s orbital, while the third electron fills the 2s orbital. Therefore, the correct electron configuration for lithium is 1s²2s¹. Choice B (1s²2s²) is incorrect as it represents the electron configuration for beryllium, not lithium. Choice C (1s²2s¹2p¹) includes the 2p orbital, which is not involved in lithium's electron configuration. Choice D (1s¹2s¹2p²) is incorrect as it does not accurately represent lithium's electron configuration.
2. Which of the following is a characteristic property of acids?
- A. Sour taste
- B. Bitter taste
- C. Reacts with bases
- D. Slippery feel
Correct answer: A
Rationale: The correct answer is 'A: Sour taste.' Acids are known to have a sour taste, which is a fundamental characteristic property of acids. This taste distinguishes acids from bases, which are more likely to have a bitter taste. The sour taste of acids is due to the presence of hydrogen ions in them. Therefore, when identifying an acid based on taste, the sour taste serves as a key indicator. Choices B, C, and D are incorrect. Bitter taste is associated with bases, not acids. While acids do react with bases (Choice C), this is not a characteristic property of acids but rather a chemical behavior. Slippery feel (Choice D) is a property of bases, not acids.
3. In what type of covalent compounds are dispersion forces typically found?
- A. Polar
- B. Non-polar
- C. Ionic
- D. Hydrogen
Correct answer: B
Rationale: Dispersion forces, also known as London dispersion forces, are the weakest intermolecular forces that occur in non-polar covalent compounds. These forces result from temporary shifts in electron density within molecules, creating temporary dipoles. As a result, non-polar molecules, which lack a permanent dipole moment, can experience these dispersion forces. Polar compounds exhibit stronger intermolecular forces such as dipole-dipole interactions or hydrogen bonding, while ionic compounds involve electrostatic interactions between ions. Therefore, the correct answer is non-polar (choice B). Choices A, C, and D are incorrect because dispersion forces are typically found in non-polar covalent compounds, not polar, ionic, or hydrogen-bonded compounds.
4. What is the correct electron configuration for nitrogen?
- A. 1s² 2s²
- B. 1s² 2s² 2p²
- C. 1s² 2s² 2p³
- D. 1s² 2s² 2p⁴
Correct answer: C
Rationale: The electron configuration of nitrogen is determined by its atomic number, which is 7. Nitrogen has 7 electrons. Following the order of filling orbitals, the electron configuration for nitrogen is 1s² 2s² 2p³. This means the first energy level is filled with 2 electrons in the 1s orbital, the second energy level is filled with 2 electrons in the 2s orbital, and 3 electrons in the 2p orbital. Each orbital can hold a specific number of electrons, and nitrogen, with its 7 electrons, fits this configuration. Choice A is incorrect because it does not account for all the electrons in the nitrogen atom. Choice B is incorrect as it only represents 6 electrons, not the 7 electrons in nitrogen. Choice D is incorrect as it represents 8 electrons, which is not the correct electron configuration for nitrogen.
5. What is the correct formula for calcium carbonate?
- A. CaSO₃
- B. CaCO₃
- C. Ca(OH)₂
- D. CH₃OH
Correct answer: B
Rationale: The correct formula for calcium carbonate is CaCO₃, which consists of one calcium (Ca) atom, one carbon (C) atom, and three oxygen (O) atoms. Therefore, choice B, CaCO₃, is the accurate formula for calcium carbonate. Choices A, C, and D do not represent the correct formula for calcium carbonate. Choice A, CaSO₃, is calcium sulfite, not calcium carbonate. Choice C, Ca(OH)₂, is calcium hydroxide, and choice D, CH₃OH, is methanol, none of which are correct formulas for calcium carbonate.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access