how many electrons are shared in a single covalent bond
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry

1. How many electrons are shared in a single covalent bond?

Correct answer: B

Rationale: The correct answer is B: '2'. In a single covalent bond, two electrons are shared between two atoms. Each atom contributes one electron to form the bond, resulting in the sharing of a total of two electrons. Choice A is incorrect because a single covalent bond involves the sharing of two electrons, not one. Choices C and D are incorrect as they do not represent the correct number of electrons shared in a single covalent bond.

2. What are the columns of the periodic table called?

Correct answer: C

Rationale: In the periodic table, columns are referred to as groups, not periods, families, or rows. These groups share similar chemical properties due to the arrangement of elements within each group, which is based on the number of valence electrons. The vertical columns help classify elements with similar characteristics. Periods refer to the rows of the periodic table, while families or groups are the vertical columns.

3. What are neutral particles called?

Correct answer: A

Rationale: Neutral particles, which have no electric charge, are known as neutrons. Neutrons are found in the nucleus of an atom along with protons. Electrons carry a negative charge and orbit the nucleus. Cations are positively charged ions formed by losing electrons. Therefore, the correct answer is 'Neutrons' as they are the neutral particles in an atom, unlike protons, electrons, or cations.

4. What are the 3 types of radiation in nuclear chemistry?

Correct answer: B

Rationale: The correct answer is B: Alpha, Beta, Gamma. In nuclear chemistry, the 3 types of radiation are alpha, beta, and gamma radiation. Alpha radiation consists of helium nuclei, beta radiation involves electrons or positrons, and gamma radiation is electromagnetic radiation of high frequency. Choice A is incorrect because 'Delta' is not a type of radiation in nuclear chemistry. Choice C is incorrect as it does not list alpha radiation. Choice D is incorrect as it lists the types in the wrong order and includes 'Delta' instead of alpha radiation.

5. The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?

Correct answer: C

Rationale: To calculate the molarity of the solution, we first need to determine the moles of solute (glucose) and solvent (water) separately. The molar mass of glucose is 180 g/mol. First, calculate the moles of glucose: 5 g / 180 g/mol = 0.02778 mol of glucose. Next, calculate the moles of water: 100 g / 18 g/mol = 5.56 mol of water. Now, calculate the total moles in the solution: 0.02778 mol glucose + 5.56 mol water = 5.5878 mol. Finally, calculate the molarity: Molarity = moles of solute / liters of solution. Since the total mass of the solution is 100 g + 5 g = 105 g = 0.105 kg, which is equal to 0.105 L, the molarity is 5.5878 mol / 0.105 L = 53.22 M, which rounds to 2.8M. Therefore, the correct answer is 2.8M. Choices A, B, and D are incorrect because they do not reflect the accurate molarity calculation based on the moles of solute and volume of the solution.

Similar Questions

Which type of chemical bond is the strongest?
What number represents the number of protons an element has?
Which of the following is a colligative property of a solution?
What are the horizontal rows of the periodic table called?
Which type of change occurs when no change is made to the chemical composition of a substance?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses