balance this equation fe cl fecl 2 3
Logo

Nursing Elites

HESI A2

HESI A2 Chemistry Practice Questions

1. Balance this equation: Fe + Cl2 → FeCl3

Correct answer: B

Rationale: In the given equation, Fe combines with Cl to form FeCl3. To balance the equation, we need to have the same number of each element on both sides. Since Cl is represented as Cl2 in the equation, we need 3 Cl2 molecules to balance Fe, resulting in 2Fe + 3Cl2 → 2FeCl3. Choice A is incorrect because it only balances Fe but not Cl2. Choice C is incorrect as it balances Fe but not Cl2. Choice D is incorrect as it balances Fe but overbalances Cl2.

2. How many electron pairs are shared to form a double covalent bond?

Correct answer: B

Rationale: The correct answer is B. In a double covalent bond, two pairs of electrons are shared between two atoms. This sharing of two electron pairs results in a stronger bond compared to a single covalent bond where only one pair of electrons is shared. Choice A is incorrect because a single covalent bond involves the sharing of one pair of electrons. Choices C and D are incorrect as they do not represent the correct number of electron pairs shared in a double covalent bond.

3. Which element has an atomic mass greater than that of sodium?

Correct answer: D

Rationale: Silicon has an atomic mass greater than that of sodium. The atomic mass of silicon is approximately 28.0855 u, whereas the atomic mass of sodium is approximately 22.9898 u. Therefore, silicon has a greater atomic mass compared to sodium. Boron, Oxygen, and Fluorine have atomic masses lower than sodium, making them incorrect choices in this context.

4. What determines polarity in a molecule?

Correct answer: C

Rationale: Polarity in a molecule is determined by the difference in electronegativity between the atoms forming the bond. The greater the difference in electronegativity, the more polar the bond and molecule become. This difference leads to an uneven distribution of electron density within the bond, creating partial positive and negative charges on the atoms involved. Choices A, B, and D are incorrect. Bond length and strength do not determine polarity, and molecular weight is not directly related to the polarity of a molecule.

5. What is a benefit of water's ability to make hydrogen bonds?

Correct answer: D

Rationale: The correct answer is D, high specific heat. Water's ability to form hydrogen bonds results in a high specific heat capacity, allowing it to absorb and release a large amount of heat energy with minimal temperature change. This property is essential for moderating temperature changes in organisms and maintaining stable environmental conditions for life processes. Choices A, lack of cohesiveness, and C, use as a nonpolar solvent, are incorrect. Water actually has high cohesiveness due to its ability to form hydrogen bonds, and it is a polar solvent, not nonpolar. Choice B, low surface tension, is also incorrect as water's hydrogen bonding contributes to its relatively high surface tension.

Similar Questions

Which element has the highest electronegativity?
What is the charge of noble gases?
What can stop the penetration of alpha particles?
Which of the following elements does not exist as a diatomic molecule?
What distinguishes one allotrope from another?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses