a triple covalent bond is formed when how many electron pairs are shared
Logo

Nursing Elites

HESI A2

Chemistry HESI A2 Quizlet

1. How many electron pairs are shared to form a triple covalent bond?

Correct answer: C

Rationale: The correct answer is C. In a triple covalent bond, three pairs of electrons are shared between two atoms. This sharing results in a total of six electrons being shared, making the bond strong. Choice A (1) is incorrect because a single covalent bond involves the sharing of one pair of electrons. Choice B (2) is incorrect as a double covalent bond consists of the sharing of two pairs of electrons. Choice D (4) is incorrect because there are only three pairs of electrons shared in a triple covalent bond, not four.

2. What is the correct electron configuration for lithium?

Correct answer: A

Rationale: The electron configuration for lithium is 1s²2s¹. Lithium has 3 electrons, and the configuration indicates that the first two electrons fill the 1s orbital, while the third electron fills the 2s orbital. Therefore, the correct electron configuration for lithium is 1s²2s¹. Choice B (1s²2s²) is incorrect as it represents the electron configuration for beryllium, not lithium. Choice C (1s²2s¹2p¹) includes the 2p orbital, which is not involved in lithium's electron configuration. Choice D (1s¹2s¹2p²) is incorrect as it does not accurately represent lithium's electron configuration.

3. Which type of chemical reaction involves an active metal reacting with an ionic compound to create a new compound?

Correct answer: B

Rationale: The correct answer is 'Single replacement.' In a single replacement reaction, an active metal replaces another element in an ionic compound, resulting in the formation of a new compound. Option A, 'Combustion,' involves a substance rapidly reacting with oxygen to release energy in the form of heat and light. Option C, 'Synthesis,' involves the combination of two or more substances to form a more complex product. Option D, 'Decomposition,' involves the breakdown of a compound into simpler substances.

4. Which two functional groups would you expect an amino acid to contain?

Correct answer: A

Rationale: Amino acids are organic compounds that are characterized by the presence of an amino group (NH2) and a carboxylic acid group (COOH) in their chemical structure. These two functional groups, found in option A, are fundamental components of amino acids and play crucial roles in their classification and biological functions. Option B contains an aldehyde group (CHO) and an amide group (CO-NH), which are not characteristic functional groups of amino acids. Option C includes a hydroxyl group (OH) and an ester group (COOR), which are not typically present in amino acids. Option D presents ether (R-O-R) and carboxylic acid (COOH) functional groups, which do not represent the functional groups commonly found in amino acids.

5. What is a balanced equation?

Correct answer: B

Rationale: A balanced equation is one where the number of each type of atom is the same on both sides, fulfilling the law of conservation of mass. This principle ensures that the total number of atoms of each element is equal in both reactants and products, signifying that no atoms are created or destroyed, but rather rearranged. Choice A is incorrect because a balanced equation has equal numbers of atoms in the reactants and products. Choice C is incorrect as a balanced equation includes both reactants and products. Choice D is incorrect because coefficients are essential in balancing equations by adjusting the number of atoms present.

Similar Questions

Which of the following compounds is ionic?
How many pairs of electrons are shared between two atoms in a single bond?
On what concept is Kelvin based?
Arsenic and silicon are examples of ___________.
Which number represents the number of protons in an element?

Access More Features

HESI A2 Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

HESI A2 Premium
$149.99/ 90 days

  • Actual HESI A2 Questions
  • 3,000 questions with answers
  • 90 days access

Other Courses